메뉴 건너뛰기




Volumn 19, Issue 2, 2009, Pages 245-260

Harnessing the strengths of anytime algorithms for constant data streams

Author keywords

Anytime algorithms; Classification confidence; Stream data mining

Indexed keywords

ANYTIME ALGORITHM; ANYTIME ALGORITHMS; BENCHMARK DATA; CLASSIFICATION CONFIDENCE; CONSTANT TIME; DATA STREAM; PERFORMANCE GAIN; PROCESSING TIME; STREAM DATA MINING;

EID: 68749087011     PISSN: 13845810     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10618-009-0139-0     Document Type: Article
Times cited : (24)

References (28)
  • 2
    • 85136074496 scopus 로고    scopus 로고
    • A framework for projected clustering of high dimensional data streams
    • Morgan Kaufmann
    • Aggarwal CC, Han J, Wang J, Yu PS (2004a) A framework for projected clustering of high dimensional data streams. In: Proceedings of the 30th VLDB. Morgan Kaufmann, pp 852-863
    • (2004) Proceedings of the 30th VLDB , pp. 852-863
    • Aggarwal, C.C.1    Han, J.2    Wang, J.3    Yu, P.S.4
  • 6
    • 84948128587 scopus 로고    scopus 로고
    • Case-based reasoning with confidence. In: Advances in case-based reasoning, (EWCBR)
    • Springer
    • Cheetham W (2000) Case-based reasoning with confidence. In: Advances in case-based reasoning, (EWCBR). Lecture notes in computer science, vol 1898. Springer, pp 15-25
    • (2000) Lecture Notes in Computer Science , vol.1898 , pp. 15-25
    • Cheetham, W.1
  • 7
    • 1142305378 scopus 로고    scopus 로고
    • What's hot and what's not: Tracking most frequent items dynamically
    • Cormode G, Muthukrishnan S (2003) What's hot and what's not: tracking most frequent items dynamically. In: Proceedings of the 22nd ACM PODS, pp 296-306
    • (2003) Proceedings of the 22nd ACM PODS , pp. 296-306
    • Cormode, G.1    Muthukrishnan, S.2
  • 8
    • 56449109804 scopus 로고    scopus 로고
    • Online classification on a budget
    • MIT Press
    • Crammer K, Kandola JS, Singer Y (2003) Online classification on a budget. In: NIPS. MIT Press
    • (2003) NIPS
    • Crammer, K.1    Kandola, J.S.2    Singer, Y.3
  • 9
    • 1942450879 scopus 로고    scopus 로고
    • Anytime interval-valued outputs for kernel machines: Fast support vector machine classification via distance geometry
    • Morgan Kaufmann
    • DeCoste D (2002) Anytime interval-valued outputs for kernel machines: fast support vector machine classification via distance geometry. In: Proceedings of the 19th ICML. Morgan Kaufmann, pp 99-106
    • (2002) Proceedings of the 19th ICML , pp. 99-106
    • Decoste, D.1
  • 10
    • 68749087830 scopus 로고    scopus 로고
    • Anytime query-tuned kernel machines via Cholesky factorization
    • SIAM
    • DeCoste D (2003) Anytime query-tuned kernel machines via Cholesky factorization. In: Proceedings of the 3rd SIAM SDM. SIAM
    • (2003) Proceedings of the 3rd SIAM SDM
    • Decoste, D.1
  • 11
    • 26944444706 scopus 로고    scopus 로고
    • Generating estimates of classification confidence for a case-based spam filter
    • 6th international conference on case-based reasoning (ICCBR) Springer
    • Delany SJ, Cunningham P, Doyle D, Zamolotskikh A (2005) Generating estimates of classification confidence for a case-based spam filter. In: 6th international conference on case-based reasoning (ICCBR). Lecture notes in computer science, vol 3620. Springer, pp 177-190
    • (2005) Lecture Notes in Computer Science , vol.3620 , pp. 177-190
    • Delany, S.J.1    Cunningham, P.2    Doyle, D.3    Zamolotskikh, A.4
  • 13
    • 33750743406 scopus 로고    scopus 로고
    • Anytime induction of decision trees: An iterative improvement approach
    • AAAI Press
    • Esmeir S, Markovitch S (2006) Anytime induction of decision trees: an iterative improvement approach. In: Proceedings of the 21st AAAI. AAAI Press
    • (2006) Proceedings of the 21st AAAI
    • Esmeir, S.1    Markovitch, S.2
  • 14
    • 17444367957 scopus 로고    scopus 로고
    • Anytime algorithm development tools
    • J Grass S Zilberstein 1996 Anytime algorithm development tools SIGART Bull 7 2 20 27
    • (1996) SIGART Bull , vol.7 , Issue.2 , pp. 20-27
    • Grass, J.1    Zilberstein, S.2
  • 16
    • 0242540431 scopus 로고    scopus 로고
    • Mining complex models from arbitrarily large databases in constant time
    • Hulten G, Domingos P (2002) Mining complex models from arbitrarily large databases in constant time. In: Proceedings of the 8th ACM KDD, pp 525-531
    • (2002) Proceedings of the 8th ACM KDD , pp. 525-531
    • Hulten, G.1    Domingos, P.2
  • 17
    • 33748771827 scopus 로고    scopus 로고
    • On state-space abstraction for anytime evaluation of Bayesian networks
    • C-L Liu MP Wellman 1996 On state-space abstraction for anytime evaluation of Bayesian networks SIGART Bull 7 2 50 57
    • (1996) SIGART Bull , vol.7 , Issue.2 , pp. 50-57
    • Liu, C.-L.1    Wellman, M.P.2
  • 18
    • 0346354497 scopus 로고    scopus 로고
    • Approximate frequency counts over data streams
    • Morgan Kaufmann
    • Manku GS, Motwani R (2002) Approximate frequency counts over data streams. In: Proceedings of the 28th VLDB. Morgan Kaufmann, pp 346-357
    • (2002) Proceedings of the 28th VLDB , pp. 346-357
    • Manku, G.S.1    Motwani, R.2
  • 22
    • 0035788947 scopus 로고    scopus 로고
    • A streaming ensemble algorithm (SEA) for large-scale classification
    • Street WN, Kim YS (2001) A streaming ensemble algorithm (SEA) for large-scale classification. In: Proceedings of the 7th ACM KDD, pp 377-382
    • (2001) Proceedings of the 7th ACM KDD , pp. 377-382
    • Street, W.N.1    Kim, Y.S.2
  • 23
    • 72849144638 scopus 로고    scopus 로고
    • Anytime classification using the nearest neighbor algorithm with applications to stream mining
    • IEEE Computer Society, pp
    • Ueno K, Xi X, Keogh EJ, Lee D-J (2006) Anytime classification using the nearest neighbor algorithm with applications to stream mining. In: Proceedings of the 6th IEEE ICDM. IEEE Computer Society, pp 623-632
    • (2006) Proceedings of the 6th IEEE ICDM , pp. 623-632
    • Ueno, K.1    Xi, X.2    Keogh, E.J.3    Lee, D.-J.4
  • 25
    • 0025597157 scopus 로고
    • Neural network classification: A Bayesian interpretation
    • 10.1109/72.80269
    • EA Wan 1990 Neural network classification: a Bayesian interpretation IEEE Trans Neural Netw 1 4 303 305 10.1109/72.80269
    • (1990) IEEE Trans Neural Netw , vol.1 , Issue.4 , pp. 303-305
    • Wan, E.A.1
  • 26
    • 77952415079 scopus 로고    scopus 로고
    • Mining concept-drifting data streams using ensemble classifiers
    • Wang H, Fan W, Yu PS, Han J (2003) Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of the 9th ACM KDD, pp 226-235
    • (2003) Proceedings of the 9th ACM KDD , pp. 226-235
    • Wang, H.1    Fan, W.2    Yu, P.S.3    Han, J.4
  • 27
    • 35148836033 scopus 로고    scopus 로고
    • Classifying under computational resource constraints: Anytime classification using probabilistic estimators
    • Y Yang GI Webb KB Korb KM Ting 2007 Classifying under computational resource constraints: anytime classification using probabilistic estimators Mach Learn 69 1 35 53
    • (2007) Mach Learn , vol.69 , Issue.1 , pp. 35-53
    • Yang, Y.1    Webb, G.I.2    Korb, K.B.3    Ting, K.M.4
  • 28
    • 0030230721 scopus 로고    scopus 로고
    • Using anytime algorithms in intelligent systems
    • S Zilberstein 1996 Using anytime algorithms in intelligent systems AI Mag 17 3 73 83
    • (1996) AI Mag , vol.17 , Issue.3 , pp. 73-83
    • Zilberstein, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.