메뉴 건너뛰기




Volumn 69, Issue 1, 2007, Pages 35-53

Classifying under computational resource constraints: Anytime classification using probabilistic estimators

Author keywords

Anytime classification; Anytime learning; Bayesian classifiers; Ensemble methods; Probabilistic prediction

Indexed keywords

ALGORITHMS; COMPUTATIONAL METHODS; CONSTRAINT THEORY; ESTIMATION; PROBABILITY; PROGRAM PROCESSORS;

EID: 35148836033     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-007-5020-z     Document Type: Article
Times cited : (25)

References (32)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716-723.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 4
    • 0003408496 scopus 로고    scopus 로고
    • [Machine-readable data repository] Department of Information and Computer Science, University of California, Irvine, CA, USA
    • Blake, C., & Merz, C. J. (2004). UCI repository of machine learning databases. [Machine-readable data repository]. Department of Information and Computer Science, University of California, Irvine, CA, USA.
    • (2004) UCI repository of machine learning databases
    • Blake, C.1    Merz, C.J.2
  • 7
    • 1942450879 scopus 로고    scopus 로고
    • Anytime interval-valued outputs for kernel machines: fast support vector machine classification via distance geometry
    • DeCoste, D. (2002). Anytime interval-valued outputs for kernel machines: fast support vector machine classification via distance geometry. In Proceedings of the 19th international conference on machine learning (pp. 99-106).
    • (2002) Proceedings of the 19th international conference on machine learning , pp. 99-106
    • DeCoste, D.1
  • 8
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7, 1-30.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 9
    • 21744462998 scopus 로고    scopus 로고
    • On bias, variance, 0/1-loss, and the curse-of-dimensionality
    • 1
    • Friedman, J. H. (1997). On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Mining and Knowledge Discovery, 1(1), 55-77.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 55-77
    • Friedman J., H.1
  • 25
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461-465.
    • (1978) Annals of Statistics , vol.6 , pp. 461-465
    • Schwarz, G.1
  • 26
    • 0008564212 scopus 로고    scopus 로고
    • Learning Bayesian belief networks based on the MDL principle: an efficient algorithm using the branch and bound technique
    • Suzuki, J. (1996). Learning Bayesian belief networks based on the MDL principle: an efficient algorithm using the branch and bound technique. In Proceedings of the 13th international conference on machine learning (pp. 463-470).
    • (1996) Proceedings of the 13th international conference on machine learning , pp. 463-470
    • Suzuki, J.1
  • 28
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting: a technique for combining boosting and wagging
    • 2
    • Webb, G. I. (2000). Multiboosting: a technique for combining boosting and wagging. Machine Learning, 40(2), 159-196.
    • (2000) Machine Learning , vol.40 , pp. 159-196
    • Webb G., I.1
  • 30
    • 14844351034 scopus 로고    scopus 로고
    • Not so naive Bayes: averaged one-dependence estimators
    • 1
    • Webb, G. I., Boughton, J., & Wang, Z. (2005). Not so naive Bayes: averaged one-dependence estimators. Machine Learning, 58(1), 5-24.
    • (2005) Machine Learning , vol.58 , pp. 5-24
    • Webb G., I.1    Boughton, J.2    Wang, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.