메뉴 건너뛰기




Volumn , Issue , 2007, Pages 448-452

OLINDDA: A cluster-based approach for detecting novelty and concept drift in data streams

Author keywords

Clustering; Concept drift; Data streams; Novelty detection

Indexed keywords

CLUSTER ANALYSIS; CLUSTERING ALGORITHMS; LEARNING SYSTEMS; PROBLEM SOLVING; REAL TIME SYSTEMS;

EID: 35248892821     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1244002.1244107     Document Type: Conference Paper
Times cited : (105)

References (5)
  • 1
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: A review -part 1: statistical approaches
    • M. Markou and S. Singh. Novelty detection: a review -part 1: statistical approaches. Signal Processing, 83:2481-2497, 2003.
    • (2003) Signal Processing , vol.83 , pp. 2481-2497
    • Markou, M.1    Singh, S.2
  • 2
    • 33748324384 scopus 로고    scopus 로고
    • R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0
    • R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2006. ISBN 3-900051-07-0.
    • (2006) R: A Language and Environment for Statistical Computing
  • 4
    • 35248886875 scopus 로고    scopus 로고
    • D. M. J. Tax. DDtools, the data description toolbox for matlab, March 2005. version 1.1.2
    • D. M. J. Tax. DDtools, the data description toolbox for matlab. http://www-ict.ewi.tudelft.nl/~davidt/dd_tools.html, March 2005. version 1.1.2.
  • 5
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden contexts. Machine Learning, 23(1):69-101, 1996.
    • (1996) Machine Learning , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1    Kubat, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.