-
4
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
Chapelle O., Vapnik V., Bousquet O., and Mukherjee S. Choosing multiple parameters for support vector machines. Mach. Learn. 46 1 (2002) 131-159
-
(2002)
Mach. Learn.
, vol.46
, Issue.1
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
5
-
-
0034271876
-
The evidence framework applied to support vector machines
-
Kwok J.T. The evidence framework applied to support vector machines. IEEE Trans. Neural Networks 11 5 (2000) 1162-1173
-
(2000)
IEEE Trans. Neural Networks
, vol.11
, Issue.5
, pp. 1162-1173
-
-
Kwok, J.T.1
-
6
-
-
0036163572
-
Bayesian methods for support vector machines: evidence and predictive class probabilities
-
Sollich P. Bayesian methods for support vector machines: evidence and predictive class probabilities. Mach. Learn. 46 1-3 (2002) 21-52
-
(2002)
Mach. Learn.
, vol.46
, Issue.1-3
, pp. 21-52
-
-
Sollich, P.1
-
7
-
-
2542639357
-
An efficient method for computing leave-one-out error in support vector machines with Gaussian kernels
-
Lee M.M.S., Keerthi S.S., Ong C.J., and DeCoste D. An efficient method for computing leave-one-out error in support vector machines with Gaussian kernels. IEEE Trans. Neural Networks 15 3 (2004) 750-757
-
(2004)
IEEE Trans. Neural Networks
, vol.15
, Issue.3
, pp. 750-757
-
-
Lee, M.M.S.1
Keerthi, S.S.2
Ong, C.J.3
DeCoste, D.4
-
8
-
-
27344455216
-
Learning the kernel parameters in kernel minimum distance classifier
-
Zhang D., Chen S., and Zhou Z.-H. Learning the kernel parameters in kernel minimum distance classifier. Pattern Recognition 39 1 (2006) 133-135
-
(2006)
Pattern Recognition
, vol.39
, Issue.1
, pp. 133-135
-
-
Zhang, D.1
Chen, S.2
Zhou, Z.-H.3
-
9
-
-
84898936871
-
On kernel target alignment
-
MIT Press, Cambridge, MA
-
Cristianini N., Kandola J., Elisseeff A., and Shawe-Taylor J. On kernel target alignment. Advances in Neural Information Processing Systems (NIPS'01) (2001), MIT Press, Cambridge, MA 367-373
-
(2001)
Advances in Neural Information Processing Systems (NIPS'01)
, pp. 367-373
-
-
Cristianini, N.1
Kandola, J.2
Elisseeff, A.3
Shawe-Taylor, J.4
-
10
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
Lanckriet G., Cristianini N., Bartlett P., Ghaoui L.E., and Jordan M.I. Learning the kernel matrix with semidefinite programming. J. Mach. Learn. Res. 5 (2004) 27-72
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 27-72
-
-
Lanckriet, G.1
Cristianini, N.2
Bartlett, P.3
Ghaoui, L.E.4
Jordan, M.I.5
-
13
-
-
84898956003
-
Kernel design using boosting
-
MIT Press, Cambridge, MA
-
Crammer K., Keshet J., and Singer Y. Kernel design using boosting. Advances in Neural Information Processing Systems (NIPS'03) (2003), MIT Press, Cambridge, MA
-
(2003)
Advances in Neural Information Processing Systems (NIPS'03)
-
-
Crammer, K.1
Keshet, J.2
Singer, Y.3
-
14
-
-
34250707340
-
Learning a kernel function for classification with small training samples
-
Pittsburgh, PA, USA
-
Hertz T., Hillel A.B., and Weinshall D. Learning a kernel function for classification with small training samples. Proceedings of the International Conference on Machine Learning (2006), Pittsburgh, PA, USA
-
(2006)
Proceedings of the International Conference on Machine Learning
-
-
Hertz, T.1
Hillel, A.B.2
Weinshall, D.3
-
16
-
-
0032786569
-
Improving support vector machine classifiers by modifying kernel functions
-
Amari S., and Wu S. Improving support vector machine classifiers by modifying kernel functions. Neural Networks 12 6 (1999) 783-789
-
(1999)
Neural Networks
, vol.12
, Issue.6
, pp. 783-789
-
-
Amari, S.1
Wu, S.2
-
21
-
-
33947194180
-
Graph embedding and extensions: a general framework for dimensionality reduction
-
Yan S., Xu D., Zhang B., Zhang H., Yang Q., and Lin S. Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29 1 (2007) 40-51
-
(2007)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.29
, Issue.1
, pp. 40-51
-
-
Yan, S.1
Xu, D.2
Zhang, B.3
Zhang, H.4
Yang, Q.5
Lin, S.6
-
22
-
-
35448973729
-
A kernel optimization method based on the localized kernel Fisher criterion
-
Chen B., Liu H., and Bao Z. A kernel optimization method based on the localized kernel Fisher criterion. Pattern Recognition 41 3 (2008) 1098-1109
-
(2008)
Pattern Recognition
, vol.41
, Issue.3
, pp. 1098-1109
-
-
Chen, B.1
Liu, H.2
Bao, Z.3
-
23
-
-
33746131974
-
Kernel-based distance metric learning for microarray data classification
-
Xiong H.L., and Chen X.-w. Kernel-based distance metric learning for microarray data classification. BMC Bioinformatics 7 (2006) 299
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 299
-
-
Xiong, H.L.1
Chen, X.-w.2
-
24
-
-
38849084561
-
-
C. Blake, E. Keogh, C.J. Merz, UCI Repository of Machine Learning Databases, Department of Information and Computer Science, University of California, Irvine, CA, 1998 [Online], available from〈http://www.ics.uci.edu/mlearn〉.
-
C. Blake, E. Keogh, C.J. Merz, UCI Repository of Machine Learning Databases, Department of Information and Computer Science, University of California, Irvine, CA, 1998 [Online], available from〈http://www.ics.uci.edu/mlearn〉.
-
-
-
-
25
-
-
38849180033
-
-
D. Michie, D.J. Spiegelhalter, C.C. Taylor (Eds.), Machine Learning, Neural and Statistical Classification, Ellis Horwood, 1994, data sets available from 〈http://www.liacc.up.pt/ML/statlog/datasets.html〉.
-
D. Michie, D.J. Spiegelhalter, C.C. Taylor (Eds.), Machine Learning, Neural and Statistical Classification, Ellis Horwood, 1994, data sets available from 〈http://www.liacc.up.pt/ML/statlog/datasets.html〉.
-
-
-
-
26
-
-
38849189315
-
-
S. Roweis, Finding the first few eigenvectors in a large space, Individual Research Note, available from 〈http://www.cs.toronto.edu/∼roweis/〉 .
-
S. Roweis, Finding the first few eigenvectors in a large space, Individual Research Note, available from 〈http://www.cs.toronto.edu/∼roweis/〉 .
-
-
-
-
27
-
-
34250752829
-
Locally adaptive classification piloted by uncertainty
-
Pittsburgh, PA
-
Dai J., Yan S., Tang X., and Kwok J.T. Locally adaptive classification piloted by uncertainty. Proceedings of the International Conference on Machine Learning (2006), Pittsburgh, PA
-
(2006)
Proceedings of the International Conference on Machine Learning
-
-
Dai, J.1
Yan, S.2
Tang, X.3
Kwok, J.T.4
-
28
-
-
23844557175
-
Radar HRRP target recognition based on higher order spectra
-
Du L., Liu H., Bao Z., and Xing M. Radar HRRP target recognition based on higher order spectra. IEEE Trans. Signal Process. 53 7 (2005) 2359-2368
-
(2005)
IEEE Trans. Signal Process.
, vol.53
, Issue.7
, pp. 2359-2368
-
-
Du, L.1
Liu, H.2
Bao, Z.3
Xing, M.4
-
29
-
-
33744538338
-
A two-distribution compounded statistical model for radar HRRP target recognition
-
Du L., Liu H., Bao Z., and Zhang J. A two-distribution compounded statistical model for radar HRRP target recognition. IEEE Trans. Signal Process. 54 6 (2006) 2226-2238
-
(2006)
IEEE Trans. Signal Process.
, vol.54
, Issue.6
, pp. 2226-2238
-
-
Du, L.1
Liu, H.2
Bao, Z.3
Zhang, J.4
-
30
-
-
0036833268
-
Bispectrum based approach to high radar range profile for automatic target recognition
-
Pei B., and Bao Z. Bispectrum based approach to high radar range profile for automatic target recognition. Pattern Recognition 35 11 (2002) 2643-2651
-
(2002)
Pattern Recognition
, vol.35
, Issue.11
, pp. 2643-2651
-
-
Pei, B.1
Bao, Z.2
-
31
-
-
0036465092
-
Properties of high-resolution range profiles
-
Mengdao X., Zheng B., and Pei B. Properties of high-resolution range profiles. Opt. Eng. 41 2 (2002) 493-504
-
(2002)
Opt. Eng.
, vol.41
, Issue.2
, pp. 493-504
-
-
Mengdao, X.1
Zheng, B.2
Pei, B.3
-
32
-
-
24944467419
-
-
H. Liu, Z. Bao, Radar HRR profiles recognition based on SVM with power-transformed-correlation kernel, Lecture Notes in Computer Science, vol. 3174, no. (I), 2004, pp. 531-536.
-
H. Liu, Z. Bao, Radar HRR profiles recognition based on SVM with power-transformed-correlation kernel, Lecture Notes in Computer Science, vol. 3174, no. (I), 2004, pp. 531-536.
-
-
-
-
33
-
-
0031061906
-
The Box-Cox metric for nearest neighbor classification improvement
-
Heiden R., and Groen F.C.A. The Box-Cox metric for nearest neighbor classification improvement. Pattern Recognition 30 (1997) 273-279
-
(1997)
Pattern Recognition
, vol.30
, pp. 273-279
-
-
Heiden, R.1
Groen, F.C.A.2
-
34
-
-
3042673775
-
Linear dimensionality reduction via a heteroscedastic extension of LDA: the Chernoff criterion
-
Loog M., and Duin R.P.W. Linear dimensionality reduction via a heteroscedastic extension of LDA: the Chernoff criterion. IEEE Trans. Pattern Anal. Mach. Intelli. 26 6 (2004) 732-739
-
(2004)
IEEE Trans. Pattern Anal. Mach. Intelli.
, vol.26
, Issue.6
, pp. 732-739
-
-
Loog, M.1
Duin, R.P.W.2
-
35
-
-
33745820770
-
-
G. Dai, D.-Y. Yeung, H. Chang, Extending kernel Fisher discriminant analysis with the weighted pairwise Chernoff criterion, in: Proceedings of ECCV 2006, Springer, Berlin, Heidelberg, 2006, pp. 308-320.
-
G. Dai, D.-Y. Yeung, H. Chang, Extending kernel Fisher discriminant analysis with the weighted pairwise Chernoff criterion, in: Proceedings of ECCV 2006, Springer, Berlin, Heidelberg, 2006, pp. 308-320.
-
-
-
-
37
-
-
15044358511
-
Face recognition using laplacianfaces
-
He X., Yan S., Hu Y., Niyogi P., and Zhang H. Face recognition using laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell. 27 3 (2005) 328-340
-
(2005)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.27
, Issue.3
, pp. 328-340
-
-
He, X.1
Yan, S.2
Hu, Y.3
Niyogi, P.4
Zhang, H.5
-
38
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
Tenenbaum J., Silva V., and Langford J. A global geometric framework for nonlinear dimensionality reduction. Science 290 22 (2000) 2319-2323
-
(2000)
Science
, vol.290
, Issue.22
, pp. 2319-2323
-
-
Tenenbaum, J.1
Silva, V.2
Langford, J.3
-
39
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
Roweis S., and Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science 290 22 (2000) 2323-2326
-
(2000)
Science
, vol.290
, Issue.22
, pp. 2323-2326
-
-
Roweis, S.1
Saul, L.2
-
40
-
-
33947492041
-
Globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics
-
Yang J., Zhang D., Yang J.-y., and Niu B. Globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics. IEEE Trans. Pattern Anal. Mach. Intell. 29 4 (2007) 650-664
-
(2007)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.29
, Issue.4
, pp. 650-664
-
-
Yang, J.1
Zhang, D.2
Yang, J.-y.3
Niu, B.4
|