-
1
-
-
0002607026
-
Bayesian classification (AutoClass): Theory and results
-
Fayyad U., Piatesky-Shapiro G., Smyth P., and Uthurusamy, (Eds.). AAAI Press
-
Cheeseman P. and Stutz J. (1995). Bayesian classification (AutoClass): Theory and results. In: Fayyad U., Piatesky-Shapiro G., Smyth P., and Uthurusamy, (Eds.), Advances in Knowledge Discovery and Data Mining pp. 153-180. AAAI Press.
-
(1995)
Advances in Knowledge Discovery and Data Mining
, pp. 153-180
-
-
Cheeseman, P.1
Stutz, J.2
-
2
-
-
84933530882
-
Approximating discrete probability distributions with dependence trees
-
Chow C.K. and Liu C.N. (1968). Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory IT-14(3): 462-467.
-
(1968)
IEEE Transactions on Information Theory
, vol.IT-14
, Issue.3
, pp. 462-467
-
-
Chow, C.K.1
Liu, C.N.2
-
3
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper G.F. and Herskovits E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning 9: 309-347.
-
(1992)
Machine Learning
, vol.9
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
4
-
-
0012135466
-
Learning polytrees
-
Laskey K.B. and Prade H., (Eds.), San Francisco, CA. Morgan Kaufmann
-
Dasgupta S. (1999). Learning polytrees. In: Laskey K.B. and Prade H., (Eds.), Proceedings of the 15th Conference on Uncertainty in AI, San Francisco, CA. Morgan Kaufmann.
-
(1999)
Proceedings of the 15th Conference on Uncertainty in AI
-
-
Dasgupta, S.1
-
5
-
-
21344482755
-
Hyper Markov laws in the statistical analysis of decomposable graphical models
-
Dawid A.P. and Lauritzen S. (1993). Hyper Markov laws in the statistical analysis of decomposable graphical models. Annals of Statistics 21: 1272-1317.
-
(1993)
Annals of Statistics
, vol.21
, pp. 1272-1317
-
-
Dawid, A.P.1
Lauritzen, S.2
-
7
-
-
0000860415
-
Markov chain Monte Carlo model determination for hierarchical and graphical log-linear models
-
Dellaportas P. and Forster J.J. (1999). Markov chain Monte Carlo model determination for hierarchical and graphical log-linear models. Biometrika 86(3): 615-633.
-
(1999)
Biometrika
, vol.86
, Issue.3
, pp. 615-633
-
-
Dellaportas, P.1
Forster, J.J.2
-
9
-
-
0001099335
-
Decomposable graphical gaussian model determination
-
Giudici P. and Green P. (1999). Decomposable graphical gaussian model determination. Biometrika 86: 785-801.
-
(1999)
Biometrika
, vol.86
, pp. 785-801
-
-
Giudici, P.1
Green, P.2
-
10
-
-
33644520104
-
Graphs and matrices
-
Harary, F. (1967). Graphs and matrices. SIAM Review 9(1): 83-90.
-
(1967)
SIAM Review
, vol.9
, Issue.1
, pp. 83-90
-
-
Harary, F.1
-
11
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
Heckerman D., Geiger D. and Chickering D.M. (1995). Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning 20(3): 197-243.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
12
-
-
84898950261
-
Maximum entropy discrimination
-
Solla S.A., Leen T.K., and Müller K.-R., (Eds.). MIT Press
-
Jaakkola T., Meilǎ M., and Jebara T. (2000). Maximum entropy discrimination. In: Solla S.A., Leen T.K., and Müller K.-R., (Eds.), Neural Information Processing Systems, vol. 12, pp. 470-476. MIT Press.
-
(2000)
Neural Information Processing Systems
, vol.12
, pp. 470-476
-
-
Jaakkola, T.1
Meilǎ, M.2
Jebara, T.3
-
13
-
-
84950945692
-
Model selection and accounting for model uncertainty in graphical models using occam's window
-
Madigan D. and Raftery A. (1994). Model selection and accounting for model uncertainty in graphical models using occam's window. Journal of the American Statistical Association 89: 1335-1346.
-
(1994)
Journal of the American Statistical Association
, vol.89
, pp. 1335-1346
-
-
Madigan, D.1
Raftery, A.2
-
14
-
-
21244439477
-
Tractable bayesian learning of tree distributions
-
Boutilier, C. and Goldszmidt, M., (Eds.), CA. Morgan Kaufmann
-
Meilǎ M. and Jaakkola T. (2000). Tractable bayesian learning of tree distributions. In: Boutilier, C. and Goldszmidt, M., (Eds.), Proceedings of the 16th Conference on Uncertainty in Al San Francisco, CA. Morgan Kaufmann pp. 380-388.
-
(2000)
Proceedings of the 16th Conference on Uncertainty in Al San Francisco
, pp. 380-388
-
-
Meilǎ, M.1
Jaakkola, T.2
-
19
-
-
84986980101
-
Sequential updating of conditional probabilities on directed graphical structures
-
Spiegelhalter D.J. and Lauritzen S.L. (1990). Sequential updating of conditional probabilities on directed graphical structures. Networks 20: 491-505.
-
(1990)
Networks
, vol.20
, pp. 491-505
-
-
Spiegelhalter, D.J.1
Lauritzen, S.L.2
-
21
-
-
0041955878
-
Maximum likelihood bounded tree-width Markov networks
-
Breese J. and Koller D., (Eds.), San Francisco, CA. Morgan Kaufmann
-
Srebro N. (2001). Maximum likelihood bounded tree-width Markov networks. In: Breese J. and Koller D., (Eds.), Proceedings of the 17th Conference on Uncertainty in AI pp. 504-511, San Francisco, CA. Morgan Kaufmann.
-
(2001)
Proceedings of the 17th Conference on Uncertainty in AI
, pp. 504-511
-
-
Srebro, N.1
|