-
1
-
-
0040457607
-
Combining models to improve classifier accuracy and robustness
-
Sunnyvale, California, USA, July 1999
-
Abbott, D. W. 1999. Combining models to improve classifier accuracy and robustness. In: Proceedings of the International Conference an Information Fusion (Fussion 99), Sunnyvale, California, USA, July 1999, Volume 1, pages 289-295.
-
(1999)
Proceedings of the International Conference An Information Fusion (Fussion 99)
, vol.1
, pp. 289-295
-
-
Abbott, D.W.1
-
2
-
-
22944452794
-
Applying support vector machines to imbalanced datasets
-
eds. J.-F. Boulicaut et al, LNAI 3201. Springer-Verlag, Berlin Heidleberg
-
Akbani, R., S. Kwek, and N. Japkowicz. 2004. Applying support vector machines to imbalanced datasets. In: ECML 2004, eds. J.-F. Boulicaut et al, LNAI 3201, pages 39-50. Springer-Verlag, Berlin Heidleberg.
-
(2004)
ECML 2004
, pp. 39-50
-
-
Akbani, R.1
Kwek, S.2
Japkowicz, N.3
-
3
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
Bauer, E. and R. Kohavi. 1999. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning 36:105-139.
-
(1999)
Machine Learning
, vol.36
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
4
-
-
0030211964
-
Bagging predictors
-
Breiman, L. 1996. Bagging predictors. Machine Learning 24:123-140.
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
7
-
-
85083464467
-
Toward scalable learning with non-uniform class and cost distributions: A case study in credit card fraud detection
-
September 1998. AAAI Press
-
Chan, P. K. and S. J. Stolfo. 1998a. Toward scalable learning with non-uniform class and cost distributions: A case study in credit card fraud detection. In: Proceedings of the. Fourth Intl. Conf. On Knowledge Discovery and Data, Mining, September 1998, pages 164-168. AAAI Press.
-
(1998)
Proceedings of The. Fourth Intl. Conf. on Knowledge Discovery and Data, Mining
, pp. 164-168
-
-
Chan, P.K.1
Stolfo, S.J.2
-
8
-
-
1942482069
-
Learning with non-uniform class and cost distributions: Effects and a multi-classifier approach
-
August 1998
-
Chan, P. K. and S. J. Stolfo. 1998b. Learning with non-uniform class and cost distributions: Effects and a multi-classifier approach. In: Work Notes KDD-98 Workshop on Distributed Data Mining, August 1998, pages 1-9.
-
(1998)
Work Notes KDD-98 Workshop on Distributed Data Mining
, pp. 1-9
-
-
Chan, P.K.1
Stolfo, S.J.2
-
9
-
-
0033336136
-
Distributed data mining in credit card fraud detection
-
Chan, P. K., F. Wei, A. Prodromidis, and S.J. Stolfo. 1999. Distributed data mining in credit card fraud detection. IEEE Intelligent Systems 14(6):67-74.
-
(1999)
IEEE Intelligent Systems
, vol.14
, Issue.6
, pp. 67-74
-
-
Chan, P.K.1
Wei, F.2
Prodromidis, A.3
Stolfo, S.J.4
-
11
-
-
0346586663
-
SMOTE: Synthetic minority over-sampling technique
-
Chawla, N. V., K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. 2002. SMOTE: Synthetic minority over-sampling technique, Journal of Artificial Intelligence Research 16:321-357.
-
(2002)
Journal of Artificial Intelligence Research
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
12
-
-
0037332891
-
Data mining for decision support on customer insolvency in telecommunications business
-
Daskalaki, S., I. Kopanas, M. Goudara, and N. Avouris. 2003. Data mining for decision support on customer insolvency in telecommunications business. European Journal of Operational Research 145(2):239-255.
-
(2003)
European Journal of Operational Research
, vol.145
, Issue.2
, pp. 239-255
-
-
Daskalaki, S.1
Kopanas, I.2
Goudara, M.3
Avouris, N.4
-
13
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
Dietterich, T. G. 2000. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning 40:139-157.
-
(2000)
Machine Learning
, vol.40
, pp. 139-157
-
-
Dietterich, T.G.1
-
15
-
-
0004708854
-
Exploiting the cost (in)sensitivity of decision tree splitting criteria
-
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
-
Drummond, C. and R. C. Holte. 2000a. Exploiting the cost (in)sensitivity of decision tree splitting criteria. In: Proceedings of the Seventeenth International Conference on Machine Learning, pages 239-246. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
-
(2000)
Proceedings of the Seventeenth International Conference on Machine Learning
, pp. 239-246
-
-
Drummond, C.1
Holte, R.C.2
-
16
-
-
0034592774
-
Explicitly representing expected cost: An alternative to ROC representation
-
Boston, MA, USA
-
Drummond, C. and R. C. Holte. 2000b. Explicitly representing expected cost: An alternative to ROC representation. In: Proceedings of the Sixth ACM SIGKDD International Conference an Knowledge Discovery and Data Mining, Boston, MA, USA, pages 198-207.
-
(2000)
Proceedings of the Sixth ACM SIGKDD International Conference an Knowledge Discovery and Data Mining
, pp. 198-207
-
-
Drummond, C.1
Holte, R.C.2
-
17
-
-
27344432474
-
C4.5, class imbalance, and cost sensitivity: Why under-sampling beats over-sampling
-
Washington, D.C., USA
-
Drummond, C. and R. C. Holte. 2003. C4.5, class imbalance, and cost sensitivity: Why under-sampling beats over-sampling. Workshop on Learning from Imbalanced Datasets II, International Conference on Machine Learning, Washington, D.C., USA.
-
(2003)
Workshop on Learning from Imbalanced Datasets II, International Conference on Machine Learning
-
-
Drummond, C.1
Holte, R.C.2
-
18
-
-
26444497707
-
What ROC, curves can't do (and cost curves can)
-
Valencia, Spain, August 2004
-
Drummond, C. and R. C. Holte. 2004. What ROC, curves can't do (and cost curves can). In: Proceedings of the ROC Analysis in Artificial Intelligence, First International Workshop, pages 19-26, Valencia, Spain, August 2004.
-
(2004)
Proceedings of the ROC Analysis in Artificial Intelligence, First International Workshop
, pp. 19-26
-
-
Drummond, C.1
Holte, R.C.2
-
19
-
-
84867577175
-
The foundations of cost-sensitive learning
-
Seattle, WA, USA, August 2001. Morgan Kaufmann Publishers Inc.
-
Elkan, C. 2001. The foundations of cost-sensitive learning. In: Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, Seattle, WA, USA, August 2001, pages 973-978. Morgan Kaufmann Publishers Inc.
-
(2001)
Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence
, pp. 973-978
-
-
Elkan, C.1
-
20
-
-
1442356040
-
A multiple resampling method for learning from imbalances data sets
-
Estabrooks, A., T. Jo, and N. Japkowicz. 2004. A multiple resampling method for learning from imbalances data sets. Computational Intelligence 20 (1): 18-36.
-
(2004)
Computational Intelligence
, vol.20
, Issue.1
, pp. 18-36
-
-
Estabrooks, A.1
Jo, T.2
Japkowicz, N.3
-
21
-
-
0030270830
-
Constructing Bayesian networks to predict uncollectible telecommunications accounts
-
Ezawa, K.J. and S. W. Norton. 1996. Constructing Bayesian networks to predict uncollectible telecommunications accounts. IEEE Expert/Intelligent Systems & Their Applications 11(5):45-51.
-
(1996)
IEEE Expert/Intelligent Systems & Their Applications
, vol.11
, Issue.5
, pp. 45-51
-
-
Ezawa, K.J.1
Norton, S.W.2
-
22
-
-
0012130233
-
Learning goal oriented bayesian networks for telecommunications management
-
Bari, Italy, July 1996. Morgan Kaufmann Publishers Inc.
-
Ezawa, K. J., M. Singh, and S. W. Norton. 1996. Learning goal oriented bayesian networks for telecommunications management. In: Proceedings of the Thirteenth International Conference on Machine Learning, Bari, Italy, July 1996, pages 139-147. Morgan Kaufmann Publishers Inc.
-
(1996)
Proceedings of the Thirteenth International Conference on Machine Learning
, pp. 139-147
-
-
Ezawa, K.J.1
Singh, M.2
Norton, S.W.3
-
24
-
-
0031222519
-
Bridging the gap between business objectives and parameters of data mining algorithms
-
Gur Ali, F. O. and W. A. Wallace. 1997. Bridging the gap between business objectives and parameters of data mining algorithms. Decision Support Systems 21:3-15.
-
(1997)
Decision Support Systems
, vol.21
, pp. 3-15
-
-
Gur Ali, F.O.1
Wallace, W.A.2
-
26
-
-
85164392958
-
A study of cross-validation and bootstrap for accuracy estimation and model selection
-
Montreal, Quebec, Canada, August 95. Morgan Kaufmann Publishers Inc.
-
Kohavi, R. 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, Quebec, Canada, August 95, pages 1137-1145. Morgan Kaufmann Publishers Inc.
-
(1995)
Proceedings of the 14th International Joint Conference on Artificial Intelligence
, pp. 1137-1145
-
-
Kohavi, R.1
-
27
-
-
84943162558
-
The role of knowledge modeling in a large scale data mining project
-
eds. I. P. Vlahavas and C. D. Spyropoulos. Berlin: Springer-Verlag
-
Kopanas, I., N. M. Avouris, and S. Daskalaki. 2002. The role of knowledge modeling in a large scale data mining project. In: Methods and Applications of Artificial Intelligence LNAI 2308, eds. I. P. Vlahavas and C. D. Spyropoulos, 288-299. Berlin: Springer-Verlag.
-
(2002)
Methods and Applications of Artificial Intelligence LNAI
, vol.2308
, pp. 288-299
-
-
Kopanas, I.1
Avouris, N.M.2
Daskalaki, S.3
-
28
-
-
0031998121
-
Machine learning for the detection of oil spills in satellite radar images
-
Kubat, M., R. Holte, and S. Matwin. 1998. Machine learning for the detection of oil spills in satellite radar images. Machine Learning 30:195-215.
-
(1998)
Machine Learning
, vol.30
, pp. 195-215
-
-
Kubat, M.1
Holte, R.2
Matwin, S.3
-
29
-
-
0001972236
-
Addressing the curse of imbalanced training sets: One-sided selection
-
Nashville, TN, USA. Morgan Kaufmann
-
Kubat, M. and S. Matwin. 1997. Addressing the curse of imbalanced training sets: One-sided selection. In: Proceedings of the 14th International Conference on Machine Learning, Nashville, TN, USA, pages 179-186. Morgan Kaufmann.
-
(1997)
Proceedings of the 14th International Conference on Machine Learning
, pp. 179-186
-
-
Kubat, M.1
Matwin, S.2
-
30
-
-
84947425690
-
Improving identification of difficult small classes by balancing class distribution
-
eds. S. Quaglini, P. Barahona, and S. Andreassen, LNAI 2101. Springer-Verlag, London, UK
-
Laurikkala, J. 2001. Improving identification of difficult small classes by balancing class distribution. In: Proceedings of the 8th Conference on AI in Medicine in Europe: Artificial Intelligence in Medicine, eds. S. Quaglini, P. Barahona, and S. Andreassen, LNAI 2101, 63-66. Springer-Verlag, London, UK.
-
(2001)
Proceedings of the 8th Conference on AI in Medicine in Europe: Artificial Intelligence in Medicine
, pp. 63-66
-
-
Laurikkala, J.1
-
32
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
eds. B. Scholkopf, C. Burges, and A. Smola, The MIT Press, Cambridge, MA, USA
-
Platt, J. 1999. Fast training of support vector machines using sequential minimal optimization. In: Advances in Kernel Methods - Support Verlor Learning, eds. B. Scholkopf, C. Burges, and A. Smola, pages 185-208, The MIT Press, Cambridge, MA, USA.
-
(1999)
Advances in Kernel Methods - Support Verlor Learning
, pp. 185-208
-
-
Platt, J.1
-
33
-
-
85101511266
-
Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions
-
Menlo Park, CA: AAAI Press
-
Provost, F. and T. Fawcett. 1997. Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions. In: Proceedings of the Third International Conference on Knowledge Discovery and Data Mining, pages 43-48. Menlo Park, CA: AAAI Press.
-
(1997)
Proceedings of the Third International Conference on Knowledge Discovery and Data Mining
, pp. 43-48
-
-
Provost, F.1
Fawcett, T.2
-
34
-
-
0035283313
-
Robust classification for imprecise environments
-
Provost, F. and T. Fawcett. 2001. Robust classification for imprecise environments. Machine Learning 42:203-231.
-
(2001)
Machine Learning
, vol.42
, pp. 203-231
-
-
Provost, F.1
Fawcett, T.2
-
37
-
-
0028202408
-
Representation design and brute-force induction in a Boeing manufacturing domain
-
Riddle, P., R. Segal, and O. Etzioni. 1994. Representation design and brute-force induction in a Boeing manufacturing domain. Applied Artificial Intelligence 8:125-147.
-
(1994)
Applied Artificial Intelligence
, vol.8
, pp. 125-147
-
-
Riddle, P.1
Segal, R.2
Etzioni, O.3
-
40
-
-
1442275185
-
Learning when training data are costly: The effect of class distribution on tree induction
-
Weiss, G. and F. Provost. 2003. Learning when training data are costly: The effect of class distribution on tree induction. Journal of Artifcial Intelligence Research 19:315-354.
-
(2003)
Journal of Artifcial Intelligence Research
, vol.19
, pp. 315-354
-
-
Weiss, G.1
Provost, F.2
-
41
-
-
0026692226
-
Stacked generalization
-
Wolpert, D. 1992. Stacked generalization. Neural Networks 5:241-259.
-
(1992)
Neural Networks
, vol.5
, pp. 241-259
-
-
Wolpert, D.1
-
42
-
-
0031121318
-
Combination of multiple classifiers using local accuracy estimates
-
Woods, K., W. P. Kegelmeyer, Jr., and K. Bowyer. 1997. Combination of multiple classifiers using local accuracy estimates. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(4):405-410.
-
(1997)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.19
, Issue.4
, pp. 405-410
-
-
Woods, K.1
Kegelmeyer Jr., W.P.2
Bowyer, K.3
-
43
-
-
0035789316
-
Learning and making decisions when costs and probabilities are both unknown
-
San Francisco, CA, USA, ACM Press
-
Zadrozny, B. and C. Elkan. 2001. Learning and making decisions when costs and probabilities are both unknown. In: Proceedings of the. Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, pages 204-213, ACM Press
-
(2001)
Proceedings of The. Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 204-213
-
-
Zadrozny, B.1
Elkan, C.2
|