메뉴 건너뛰기




Volumn 20, Issue 5, 2006, Pages 381-417

Evaluation of classifiers for an uneven class distribution problem

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; CLASSIFIERS; CUSTOMER SATISFACTION; DATA MINING; DATA REDUCTION; EVALUATION; PROBLEM SOLVING; SET THEORY;

EID: 33646421421     PISSN: 08839514     EISSN: 10876545     Source Type: Journal    
DOI: 10.1080/08839510500313653     Document Type: Review
Times cited : (164)

References (43)
  • 1
    • 0040457607 scopus 로고    scopus 로고
    • Combining models to improve classifier accuracy and robustness
    • Sunnyvale, California, USA, July 1999
    • Abbott, D. W. 1999. Combining models to improve classifier accuracy and robustness. In: Proceedings of the International Conference an Information Fusion (Fussion 99), Sunnyvale, California, USA, July 1999, Volume 1, pages 289-295.
    • (1999) Proceedings of the International Conference An Information Fusion (Fussion 99) , vol.1 , pp. 289-295
    • Abbott, D.W.1
  • 2
    • 22944452794 scopus 로고    scopus 로고
    • Applying support vector machines to imbalanced datasets
    • eds. J.-F. Boulicaut et al, LNAI 3201. Springer-Verlag, Berlin Heidleberg
    • Akbani, R., S. Kwek, and N. Japkowicz. 2004. Applying support vector machines to imbalanced datasets. In: ECML 2004, eds. J.-F. Boulicaut et al, LNAI 3201, pages 39-50. Springer-Verlag, Berlin Heidleberg.
    • (2004) ECML 2004 , pp. 39-50
    • Akbani, R.1    Kwek, S.2    Japkowicz, N.3
  • 3
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer, E. and R. Kohavi. 1999. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning 36:105-139.
    • (1999) Machine Learning , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. 1996. Bagging predictors. Machine Learning 24:123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 5
    • 0000521473 scopus 로고
    • Ridge estimators in logistic regression
    • le Cessie, S. and J. C. van Houwelingen. 1992. Ridge estimators in logistic regression. Applied Statistics 41(1):191-201.
    • (1992) Applied Statistics , vol.41 , Issue.1 , pp. 191-201
    • Le Cessie, S.1    Van Houwelingen, J.C.2
  • 7
    • 85083464467 scopus 로고    scopus 로고
    • Toward scalable learning with non-uniform class and cost distributions: A case study in credit card fraud detection
    • September 1998. AAAI Press
    • Chan, P. K. and S. J. Stolfo. 1998a. Toward scalable learning with non-uniform class and cost distributions: A case study in credit card fraud detection. In: Proceedings of the. Fourth Intl. Conf. On Knowledge Discovery and Data, Mining, September 1998, pages 164-168. AAAI Press.
    • (1998) Proceedings of The. Fourth Intl. Conf. on Knowledge Discovery and Data, Mining , pp. 164-168
    • Chan, P.K.1    Stolfo, S.J.2
  • 8
    • 1942482069 scopus 로고    scopus 로고
    • Learning with non-uniform class and cost distributions: Effects and a multi-classifier approach
    • August 1998
    • Chan, P. K. and S. J. Stolfo. 1998b. Learning with non-uniform class and cost distributions: Effects and a multi-classifier approach. In: Work Notes KDD-98 Workshop on Distributed Data Mining, August 1998, pages 1-9.
    • (1998) Work Notes KDD-98 Workshop on Distributed Data Mining , pp. 1-9
    • Chan, P.K.1    Stolfo, S.J.2
  • 12
    • 0037332891 scopus 로고    scopus 로고
    • Data mining for decision support on customer insolvency in telecommunications business
    • Daskalaki, S., I. Kopanas, M. Goudara, and N. Avouris. 2003. Data mining for decision support on customer insolvency in telecommunications business. European Journal of Operational Research 145(2):239-255.
    • (2003) European Journal of Operational Research , vol.145 , Issue.2 , pp. 239-255
    • Daskalaki, S.1    Kopanas, I.2    Goudara, M.3    Avouris, N.4
  • 13
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich, T. G. 2000. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning 40:139-157.
    • (2000) Machine Learning , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 15
    • 0004708854 scopus 로고    scopus 로고
    • Exploiting the cost (in)sensitivity of decision tree splitting criteria
    • Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
    • Drummond, C. and R. C. Holte. 2000a. Exploiting the cost (in)sensitivity of decision tree splitting criteria. In: Proceedings of the Seventeenth International Conference on Machine Learning, pages 239-246. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
    • (2000) Proceedings of the Seventeenth International Conference on Machine Learning , pp. 239-246
    • Drummond, C.1    Holte, R.C.2
  • 20
    • 1442356040 scopus 로고    scopus 로고
    • A multiple resampling method for learning from imbalances data sets
    • Estabrooks, A., T. Jo, and N. Japkowicz. 2004. A multiple resampling method for learning from imbalances data sets. Computational Intelligence 20 (1): 18-36.
    • (2004) Computational Intelligence , vol.20 , Issue.1 , pp. 18-36
    • Estabrooks, A.1    Jo, T.2    Japkowicz, N.3
  • 21
    • 0030270830 scopus 로고    scopus 로고
    • Constructing Bayesian networks to predict uncollectible telecommunications accounts
    • Ezawa, K.J. and S. W. Norton. 1996. Constructing Bayesian networks to predict uncollectible telecommunications accounts. IEEE Expert/Intelligent Systems & Their Applications 11(5):45-51.
    • (1996) IEEE Expert/Intelligent Systems & Their Applications , vol.11 , Issue.5 , pp. 45-51
    • Ezawa, K.J.1    Norton, S.W.2
  • 22
    • 0012130233 scopus 로고    scopus 로고
    • Learning goal oriented bayesian networks for telecommunications management
    • Bari, Italy, July 1996. Morgan Kaufmann Publishers Inc.
    • Ezawa, K. J., M. Singh, and S. W. Norton. 1996. Learning goal oriented bayesian networks for telecommunications management. In: Proceedings of the Thirteenth International Conference on Machine Learning, Bari, Italy, July 1996, pages 139-147. Morgan Kaufmann Publishers Inc.
    • (1996) Proceedings of the Thirteenth International Conference on Machine Learning , pp. 139-147
    • Ezawa, K.J.1    Singh, M.2    Norton, S.W.3
  • 24
    • 0031222519 scopus 로고    scopus 로고
    • Bridging the gap between business objectives and parameters of data mining algorithms
    • Gur Ali, F. O. and W. A. Wallace. 1997. Bridging the gap between business objectives and parameters of data mining algorithms. Decision Support Systems 21:3-15.
    • (1997) Decision Support Systems , vol.21 , pp. 3-15
    • Gur Ali, F.O.1    Wallace, W.A.2
  • 25
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: A systematic study
    • Japkowicz, N. and S. Stephen. 2002. The class imbalance problem: A systematic study. Intelligent Data Analysis Journal 6(5): 429-449.
    • (2002) Intelligent Data Analysis Journal , vol.6 , Issue.5 , pp. 429-449
    • Japkowicz, N.1    Stephen, S.2
  • 26
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Montreal, Quebec, Canada, August 95. Morgan Kaufmann Publishers Inc.
    • Kohavi, R. 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, Quebec, Canada, August 95, pages 1137-1145. Morgan Kaufmann Publishers Inc.
    • (1995) Proceedings of the 14th International Joint Conference on Artificial Intelligence , pp. 1137-1145
    • Kohavi, R.1
  • 27
    • 84943162558 scopus 로고    scopus 로고
    • The role of knowledge modeling in a large scale data mining project
    • eds. I. P. Vlahavas and C. D. Spyropoulos. Berlin: Springer-Verlag
    • Kopanas, I., N. M. Avouris, and S. Daskalaki. 2002. The role of knowledge modeling in a large scale data mining project. In: Methods and Applications of Artificial Intelligence LNAI 2308, eds. I. P. Vlahavas and C. D. Spyropoulos, 288-299. Berlin: Springer-Verlag.
    • (2002) Methods and Applications of Artificial Intelligence LNAI , vol.2308 , pp. 288-299
    • Kopanas, I.1    Avouris, N.M.2    Daskalaki, S.3
  • 28
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • Kubat, M., R. Holte, and S. Matwin. 1998. Machine learning for the detection of oil spills in satellite radar images. Machine Learning 30:195-215.
    • (1998) Machine Learning , vol.30 , pp. 195-215
    • Kubat, M.1    Holte, R.2    Matwin, S.3
  • 29
    • 0001972236 scopus 로고    scopus 로고
    • Addressing the curse of imbalanced training sets: One-sided selection
    • Nashville, TN, USA. Morgan Kaufmann
    • Kubat, M. and S. Matwin. 1997. Addressing the curse of imbalanced training sets: One-sided selection. In: Proceedings of the 14th International Conference on Machine Learning, Nashville, TN, USA, pages 179-186. Morgan Kaufmann.
    • (1997) Proceedings of the 14th International Conference on Machine Learning , pp. 179-186
    • Kubat, M.1    Matwin, S.2
  • 30
    • 84947425690 scopus 로고    scopus 로고
    • Improving identification of difficult small classes by balancing class distribution
    • eds. S. Quaglini, P. Barahona, and S. Andreassen, LNAI 2101. Springer-Verlag, London, UK
    • Laurikkala, J. 2001. Improving identification of difficult small classes by balancing class distribution. In: Proceedings of the 8th Conference on AI in Medicine in Europe: Artificial Intelligence in Medicine, eds. S. Quaglini, P. Barahona, and S. Andreassen, LNAI 2101, 63-66. Springer-Verlag, London, UK.
    • (2001) Proceedings of the 8th Conference on AI in Medicine in Europe: Artificial Intelligence in Medicine , pp. 63-66
    • Laurikkala, J.1
  • 32
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • eds. B. Scholkopf, C. Burges, and A. Smola, The MIT Press, Cambridge, MA, USA
    • Platt, J. 1999. Fast training of support vector machines using sequential minimal optimization. In: Advances in Kernel Methods - Support Verlor Learning, eds. B. Scholkopf, C. Burges, and A. Smola, pages 185-208, The MIT Press, Cambridge, MA, USA.
    • (1999) Advances in Kernel Methods - Support Verlor Learning , pp. 185-208
    • Platt, J.1
  • 33
    • 85101511266 scopus 로고    scopus 로고
    • Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions
    • Menlo Park, CA: AAAI Press
    • Provost, F. and T. Fawcett. 1997. Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions. In: Proceedings of the Third International Conference on Knowledge Discovery and Data Mining, pages 43-48. Menlo Park, CA: AAAI Press.
    • (1997) Proceedings of the Third International Conference on Knowledge Discovery and Data Mining , pp. 43-48
    • Provost, F.1    Fawcett, T.2
  • 34
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • Provost, F. and T. Fawcett. 2001. Robust classification for imprecise environments. Machine Learning 42:203-231.
    • (2001) Machine Learning , vol.42 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 37
    • 0028202408 scopus 로고
    • Representation design and brute-force induction in a Boeing manufacturing domain
    • Riddle, P., R. Segal, and O. Etzioni. 1994. Representation design and brute-force induction in a Boeing manufacturing domain. Applied Artificial Intelligence 8:125-147.
    • (1994) Applied Artificial Intelligence , vol.8 , pp. 125-147
    • Riddle, P.1    Segal, R.2    Etzioni, O.3
  • 40
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly: The effect of class distribution on tree induction
    • Weiss, G. and F. Provost. 2003. Learning when training data are costly: The effect of class distribution on tree induction. Journal of Artifcial Intelligence Research 19:315-354.
    • (2003) Journal of Artifcial Intelligence Research , vol.19 , pp. 315-354
    • Weiss, G.1    Provost, F.2
  • 41
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert, D. 1992. Stacked generalization. Neural Networks 5:241-259.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.