메뉴 건너뛰기




Volumn , Issue , 2004, Pages 69-78

Data mining in metric space: An empirical analysis of supervised learning performance criteria

Author keywords

Cross Entropy; Lift; Metrics; Performance Evaluation; Precision; Recall; ROC; Supervised Learning

Indexed keywords

CROSS ENTROPY; METRICS; MULTIDIMENSIONL SCALING (MDS); PERFORMANCE EVALUATION; PRECISION; RECALL; ROC; SUPERVISED LEARNING;

EID: 12244279570     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (246)

References (10)
  • 2
    • 0002345034 scopus 로고
    • The comparison and evaluation of forecasters
    • M. DeGroot and S. Fienberg. The comparison and evaluation of forecasters. Statistician, 32(1):12-22, 1982.
    • (1982) Statistician , vol.32 , Issue.1 , pp. 12-22
    • Degroot, M.1    Fienberg, S.2
  • 6
    • 0029306995 scopus 로고
    • Statlog: Comparison of classification algorithms on large real-world problems
    • May/June
    • R. King, C. Feng, and A. Shutherland. Statlog: comparison of classification algorithms on large real-world problems. Applied Artificial Intelligence, 9(3):259-287, May/June 1995.
    • (1995) Applied Artificial Intelligence , vol.9 , Issue.3 , pp. 259-287
    • King, R.1    Feng, C.2    Shutherland, A.3
  • 7
    • 1942421135 scopus 로고    scopus 로고
    • The geometry of roc space: Understanding machine learning metrics through roc isometrics
    • AAAI Press, January
    • P.A.Flach. The geometry of roc space: understanding machine learning metrics through roc isometrics. In Proc. 20th International Conference on Machine Learning (ICML'03), pages 194-201. AAAI Press, January 2003.
    • (2003) Proc. 20th International Conference on Machine Learning (ICML'03) , pp. 194-201
    • Flach, P.A.1
  • 8
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
    • A. Smola, P. Bartlett, B. Schoelkopf, and D. Schuurmans, editors
    • J. Platt. Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In A. Smola, P. Bartlett, B. Schoelkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 61-74, 1999.
    • (1999) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.1
  • 9
    • 0042346121 scopus 로고    scopus 로고
    • Tree induction for probability-based rankings
    • F. Provost and P. Domingos. Tree induction for probability-based rankings. Machine Learning, 52(3), 2003.
    • (2003) Machine Learning , vol.52 , Issue.3
    • Provost, F.1    Domingos, P.2
  • 10
    • 85101511266 scopus 로고    scopus 로고
    • Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions
    • F. J. Provost and T. Fawcett. Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions. In Knowledge Discovery and Data Mining, pages 43-48, 1997.
    • (1997) Knowledge Discovery and Data Mining , pp. 43-48
    • Provost, F.J.1    Fawcett, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.