메뉴 건너뛰기




Volumn 21, Issue 8, 2008, Pages 753-763

A comparative study on rough set based class imbalance learning

Author keywords

Class imbalance learning; Rough sets; Sample weighting

Indexed keywords

DECISION MAKING; DECISION THEORY; DECISION TREES; EDUCATION; FUZZY SETS; LEARNING SYSTEMS; MATHEMATICAL MODELS; SAMPLING; SET THEORY; SUPPORT VECTOR MACHINES;

EID: 54949132937     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2008.03.031     Document Type: Article
Times cited : (49)

References (60)
  • 1
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behavior of several methods for balancing machine learning training data
    • Batista G., Prati R.C., and Monard M.C. A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explorations 6 1 (2004) 20-29
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 20-29
    • Batista, G.1    Prati, R.C.2    Monard, M.C.3
  • 2
    • 0000255880 scopus 로고    scopus 로고
    • A comparison of dynamic and non-dynamic rough set methods for extracting laws from decision tables
    • Polkowski L., and Skowron A. (Eds), Physica-Verlag, Heidelberg
    • Bazan J. A comparison of dynamic and non-dynamic rough set methods for extracting laws from decision tables. In: Polkowski L., and Skowron A. (Eds). Rough Sets in Knowledge Discovery (1998), Physica-Verlag, Heidelberg 321-365
    • (1998) Rough Sets in Knowledge Discovery , pp. 321-365
    • Bazan, J.1
  • 3
    • 0035502119 scopus 로고    scopus 로고
    • Reducts within the variable precision rough sets model: a further investigation
    • Beynon M. Reducts within the variable precision rough sets model: a further investigation. European Journal of Operational Research 134 (2001) 592-605
    • (2001) European Journal of Operational Research , vol.134 , pp. 592-605
    • Beynon, M.1
  • 4
    • 54949130493 scopus 로고    scopus 로고
    • C. Blake, E. Keogh, C.J. Merz, UCI Repository of Machine Learning Databases, Department of Information and Computer Science, University of California, Irvine. Available from: , 1998.
    • C. Blake, E. Keogh, C.J. Merz, UCI Repository of Machine Learning Databases, Department of Information and Computer Science, University of California, Irvine. Available from: , 1998.
  • 5
    • 9444295412 scopus 로고    scopus 로고
    • U. Brefeld, P. Geibel, F. Wysotzki, Support vector machines with sample dependent costs, Proceedings of 14th European Conference on Machine Learning, 2003, pp. 23-34.
    • U. Brefeld, P. Geibel, F. Wysotzki, Support vector machines with sample dependent costs, Proceedings of 14th European Conference on Machine Learning, 2003, pp. 23-34.
  • 6
    • 54949087024 scopus 로고    scopus 로고
    • N. Chawla, N. Japkowicz, A. Kolcz (Eds.), ICML'2003 Workshop on Learning from Imbalanced Data Sets (II), Proceedings available at: , 2003.
    • N. Chawla, N. Japkowicz, A. Kolcz (Eds.), ICML'2003 Workshop on Learning from Imbalanced Data Sets (II), Proceedings available at: , 2003.
  • 7
    • 34249753618 scopus 로고
    • Support-vector network
    • Cortes C., and Vapnik V. Support-vector network. Machine Learning 20 (1995) 273-297
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 9
    • 54949122048 scopus 로고    scopus 로고
    • C. Drummond, R.C. Holte, C4.5, class imbalance, and cost sensitivity: why under-sampling beats over-sampling, Working Notes of the ICML'03 Workshop Learning from Imbalanced Data Sets, 2003.
    • C. Drummond, R.C. Holte, C4.5, class imbalance, and cost sensitivity: why under-sampling beats over-sampling, Working Notes of the ICML'03 Workshop Learning from Imbalanced Data Sets, 2003.
  • 10
    • 0032205549 scopus 로고    scopus 로고
    • Uncertainty measures of rough set prediction
    • Duntsch I., and Gediga G. Uncertainty measures of rough set prediction. Artificial Intelligence 106 1 (1998) 109-137
    • (1998) Artificial Intelligence , vol.106 , Issue.1 , pp. 109-137
    • Duntsch, I.1    Gediga, G.2
  • 12
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T. An introduction to ROC analysis. Pattern Recognition Letters 27 (2006) 861-874
    • (2006) Pattern Recognition Letters , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 16
    • 0029306899 scopus 로고
    • The usefulness of machine learning approach to knowledge acquisition
    • Grzymala-Busse D.M., and Grzymala-Busse J.W. The usefulness of machine learning approach to knowledge acquisition. Computational Intelligence 11 (1995) 268-279
    • (1995) Computational Intelligence , vol.11 , pp. 268-279
    • Grzymala-Busse, D.M.1    Grzymala-Busse, J.W.2
  • 17
    • 0002135094 scopus 로고
    • LERS- a system for learning from samples based on rough sets
    • Slowinski R. (Ed), Kluwer Academic Publishers
    • Grzymala-Busse J.W. LERS- a system for learning from samples based on rough sets. In: Slowinski R. (Ed). Intelligent Decision Support (1992), Kluwer Academic Publishers 3-18
    • (1992) Intelligent Decision Support , pp. 3-18
    • Grzymala-Busse, J.W.1
  • 19
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalization of the area under the ROC curve to multiple class classification problems
    • Hand D.J., and Till R.J. A simple generalization of the area under the ROC curve to multiple class classification problems. Machine Learning 45 2 (2001) 171-186
    • (2001) Machine Learning , vol.45 , Issue.2 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 20
    • 85130633757 scopus 로고    scopus 로고
    • Data mining via discretization, generalization and rough set feature selection
    • Hu X.-H., and Cercone N. Data mining via discretization, generalization and rough set feature selection. Knowledge and Information Systems 1 1 (1999) 33-60
    • (1999) Knowledge and Information Systems , vol.1 , Issue.1 , pp. 33-60
    • Hu, X.-H.1    Cercone, N.2
  • 21
    • 54949142425 scopus 로고    scopus 로고
    • N. Japkowicz, Learning from imbalanced data sets: a comparison of various strategies, Working Notes of the AAAI'00 Workshop Learning from Imbalanced Data Sets, 2000, pp. 10-15.
    • N. Japkowicz, Learning from imbalanced data sets: a comparison of various strategies, Working Notes of the AAAI'00 Workshop Learning from Imbalanced Data Sets, 2000, pp. 10-15.
  • 22
    • 54949153640 scopus 로고    scopus 로고
    • N. Japkowicz (Eds.), AAAI Workshop on Learning from Imbalanced Data Sets, Technical Report WS-00-05, AAAI Press, Menlo Park, CA, 2003.
    • N. Japkowicz (Eds.), AAAI Workshop on Learning from Imbalanced Data Sets, Technical Report WS-00-05, AAAI Press, Menlo Park, CA, 2003.
  • 23
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: a systematic study
    • Japkowicz N., and Stephen S. The class imbalance problem: a systematic study. Intelligent Data Analysis 6 5 (2002) 429-450
    • (2002) Intelligent Data Analysis , vol.6 , Issue.5 , pp. 429-450
    • Japkowicz, N.1    Stephen, S.2
  • 24
    • 0033079944 scopus 로고    scopus 로고
    • Rules in incomplete information systems
    • Kryszkiewicz M. Rules in incomplete information systems. Information Sciences 113 3-4 (1999) 271-292
    • (1999) Information Sciences , vol.113 , Issue.3-4 , pp. 271-292
    • Kryszkiewicz, M.1
  • 25
    • 0035156139 scopus 로고    scopus 로고
    • Comparative study of alternative type of knowledge reduction in inconsistent systems
    • Kryszkiewicz M. Comparative study of alternative type of knowledge reduction in inconsistent systems. International Journal of Intelligent Systems 16 (2001) 105-120
    • (2001) International Journal of Intelligent Systems , vol.16 , pp. 105-120
    • Kryszkiewicz, M.1
  • 28
    • 36549024482 scopus 로고    scopus 로고
    • A weighted rough set based method developed for class imbalance learning
    • Liu J.F., Hu Q.H., and Yu D.R. A weighted rough set based method developed for class imbalance learning. Information Sciences 178 4 (2008) 1235-1256
    • (2008) Information Sciences , vol.178 , Issue.4 , pp. 1235-1256
    • Liu, J.F.1    Hu, Q.H.2    Yu, D.R.3
  • 29
    • 54949138704 scopus 로고    scopus 로고
    • M.A. Maloof, Learning when data sets are imbalanced and when costs are unequal and unknown, in: Proceedings of Working Notes ICML'03 Workshop Learning from Imbalanced Data Sets, 2003.
    • M.A. Maloof, Learning when data sets are imbalanced and when costs are unequal and unknown, in: Proceedings of Working Notes ICML'03 Workshop Learning from Imbalanced Data Sets, 2003.
  • 30
    • 1642525195 scopus 로고    scopus 로고
    • Approaches to knowledge reduction based on variable precision rough set model
    • Mi J.-S., Wu W.-Z., and Zhang W.-X. Approaches to knowledge reduction based on variable precision rough set model. Information Sciences 159 (2004) 255-272
    • (2004) Information Sciences , vol.159 , pp. 255-272
    • Mi, J.-S.1    Wu, W.-Z.2    Zhang, W.-X.3
  • 31
    • 0003046840 scopus 로고
    • A theory and methodology of inductive learning
    • Michalski R.S., Carbonell J.G., and Mitchell T.M. (Eds), Morgan Kaufman, San Mateo, CA
    • Michalski R.S. A theory and methodology of inductive learning. In: Michalski R.S., Carbonell J.G., and Mitchell T.M. (Eds). Machine Learning: An Artificial Intelligence Approach (1983), Morgan Kaufman, San Mateo, CA 83-134
    • (1983) Machine Learning: An Artificial Intelligence Approach , pp. 83-134
    • Michalski, R.S.1
  • 32
    • 0003425662 scopus 로고    scopus 로고
    • Massachusetts Institute of Technology
    • Osuna E., Freund R., and Girosi F. Support vector machines: training and applications. AI Memo 1602 (1997), Massachusetts Institute of Technology
    • (1997) AI Memo 1602
    • Osuna, E.1    Freund, R.2    Girosi, F.3
  • 35
    • 0036851028 scopus 로고    scopus 로고
    • Rough sets and intelligent data analysis
    • Pawlak Z. Rough sets and intelligent data analysis. Information Sciences 147 (2002) 1-12
    • (2002) Information Sciences , vol.147 , pp. 1-12
    • Pawlak, Z.1
  • 37
    • 33749667344 scopus 로고    scopus 로고
    • Rough sets: some extensions
    • Pawlak Z., and Skowron A. Rough sets: some extensions. Information Sciences 177 1 (2007) 28-40
    • (2007) Information Sciences , vol.177 , Issue.1 , pp. 28-40
    • Pawlak, Z.1    Skowron, A.2
  • 38
  • 39
    • 33749668975 scopus 로고    scopus 로고
    • Rough sets and boolean reasoning
    • Pawlak Z., and Skowron A. Rough sets and boolean reasoning. Information Sciences 177 1 (2007) 41-73
    • (2007) Information Sciences , vol.177 , Issue.1 , pp. 41-73
    • Pawlak, Z.1    Skowron, A.2
  • 40
    • 9444270977 scopus 로고    scopus 로고
    • R.C. Prati, G.E.A.P.A. Batista, M.C. Monard, Class imbalances versus class overlapping: an analysis of a learning system behavior, MICAI, 2004, pp. 312-321.
    • R.C. Prati, G.E.A.P.A. Batista, M.C. Monard, Class imbalances versus class overlapping: an analysis of a learning system behavior, MICAI, 2004, pp. 312-321.
  • 41
    • 54949096855 scopus 로고    scopus 로고
    • F.J. Provost, T. Fawcett, Analysis and visualization of classifier performance: comparison under imprecise class and cost distributions, KDD, 1997, pp. 43-48.
    • F.J. Provost, T. Fawcett, Analysis and visualization of classifier performance: comparison under imprecise class and cost distributions, KDD, 1997, pp. 43-48.
  • 43
    • 54949095294 scopus 로고    scopus 로고
    • G. Sakkis, I. Androutsopoulos, G. Paliouras, V. Karkaletsis, C. Spyropoulos, P. atamatopoulos, Stacking classifiers for anti-spam filtering of E-mail, in: L. Lee, D. Harman (Eds.), Proceedings of the 6th Conference on Empirical Methods in Natural Language Processing (EMNLP 2001), Carnegie Mellon University, 2001, pp. 44-50.
    • G. Sakkis, I. Androutsopoulos, G. Paliouras, V. Karkaletsis, C. Spyropoulos, P. atamatopoulos, Stacking classifiers for anti-spam filtering of E-mail, in: L. Lee, D. Harman (Eds.), Proceedings of the 6th Conference on Empirical Methods in Natural Language Processing (EMNLP 2001), Carnegie Mellon University, 2001, pp. 44-50.
  • 44
    • 0036833247 scopus 로고    scopus 로고
    • A rough-fuzzy approach for generating classification rules
    • Shen Q., and Chouchoulas A. A rough-fuzzy approach for generating classification rules. Pattern Recognition 35 11 (2002) 2425-2438
    • (2002) Pattern Recognition , vol.35 , Issue.11 , pp. 2425-2438
    • Shen, Q.1    Chouchoulas, A.2
  • 46
    • 0036948613 scopus 로고    scopus 로고
    • Approximate entropy reducts
    • Slezak D. Approximate entropy reducts. Fundamenta Informaticae 53 3-4 (2002) 365-390
    • (2002) Fundamenta Informaticae , vol.53 , Issue.3-4 , pp. 365-390
    • Slezak, D.1
  • 47
    • 0002865353 scopus 로고    scopus 로고
    • On rough set based approaches to induction of decision rules
    • Polkowski L., and Skowron A. (Eds), Physica-Verlag, Heidelberg, Germany
    • Stefanowski J. On rough set based approaches to induction of decision rules. In: Polkowski L., and Skowron A. (Eds). Rough Sets in Knowledge Discovery (1998), Physica-Verlag, Heidelberg, Germany 501-529
    • (1998) Rough Sets in Knowledge Discovery , pp. 501-529
    • Stefanowski, J.1
  • 48
    • 0000586781 scopus 로고
    • A general two stage approach to rule induction from examples
    • Ziarko W. (Ed), Springer-Verlag, London, UK
    • Stefanowski J., and Vanderpooten D. A general two stage approach to rule induction from examples. In: Ziarko W. (Ed). Rough Sets, Fuzzy Sets and Knowledge Discovery (1994), Springer-Verlag, London, UK 317-325
    • (1994) Rough Sets, Fuzzy Sets and Knowledge Discovery , pp. 317-325
    • Stefanowski, J.1    Vanderpooten, D.2
  • 49
    • 33747062126 scopus 로고    scopus 로고
    • Rough sets for handling imbalanced data: combining filtering and rule-based classifiers
    • Stefanowski J., and Wilk S. Rough sets for handling imbalanced data: combining filtering and rule-based classifiers. Fundamenta Informaticae 72 1 (2006) 379-391
    • (2006) Fundamenta Informaticae , vol.72 , Issue.1 , pp. 379-391
    • Stefanowski, J.1    Wilk, S.2
  • 50
    • 28244467848 scopus 로고    scopus 로고
    • Posterior probability support vector machines for unbalanced data
    • Tao Q., Wu G.-W., Wang F.-Y., and Wang J. Posterior probability support vector machines for unbalanced data. IEEE Transactions on Neural Networks 16 6 (2005) 1561-1573
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.6 , pp. 1561-1573
    • Tao, Q.1    Wu, G.-W.2    Wang, F.-Y.3    Wang, J.4
  • 51
    • 0036565589 scopus 로고    scopus 로고
    • An instance-weighting method to induce cost-sensitive trees
    • Ting K.M. An instance-weighting method to induce cost-sensitive trees. IEEE Transactions on Knowledge and Data Engineering 14 3 (2002) 659-665
    • (2002) IEEE Transactions on Knowledge and Data Engineering , vol.14 , Issue.3 , pp. 659-665
    • Ting, K.M.1
  • 52
    • 0032291072 scopus 로고    scopus 로고
    • Automated extraction of medical expert system rules from clinical databases based on rough set theory
    • Tsumoto S. Automated extraction of medical expert system rules from clinical databases based on rough set theory. Information Sciences 112 1-4 (1998) 67-84
    • (1998) Information Sciences , vol.112 , Issue.1-4 , pp. 67-84
    • Tsumoto, S.1
  • 53
    • 2342616187 scopus 로고    scopus 로고
    • Mining diagnostic rules from clinical databases using rough sets and medical diagnostic model
    • Tsumoto S. Mining diagnostic rules from clinical databases using rough sets and medical diagnostic model. Information Sciences 162 2 (2004) 65-80
    • (2004) Information Sciences , vol.162 , Issue.2 , pp. 65-80
    • Tsumoto, S.1
  • 55
    • 33645310674 scopus 로고    scopus 로고
    • A comparative study of algebra viewpoint and information viewpoint in attribute reduction
    • Wang G.Y., Zhao J., An J.J., et al. A comparative study of algebra viewpoint and information viewpoint in attribute reduction. Fundamenta Informaticae 68 3 (2005) 289-301
    • (2005) Fundamenta Informaticae , vol.68 , Issue.3 , pp. 289-301
    • Wang, G.Y.1    Zhao, J.2    An, J.J.3
  • 56
    • 20844458491 scopus 로고    scopus 로고
    • Mining with rarity - problems and solutions: a unifying framework
    • Weiss G.M. Mining with rarity - problems and solutions: a unifying framework. SIGKDD Explorations 6 1 (2004) 7-19
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 7-19
    • Weiss, G.M.1
  • 57
    • 54949136002 scopus 로고    scopus 로고
    • G.M. Weiss, F. Provost, The effect of class distribution on classifier learning: an empirical study, Technical Report ML-TR-44, Rutgers University, Department of Computer Science, 2001.
    • G.M. Weiss, F. Provost, The effect of class distribution on classifier learning: an empirical study, Technical Report ML-TR-44, Rutgers University, Department of Computer Science, 2001.
  • 58
    • 54949103057 scopus 로고    scopus 로고
    • B. Zadrozny, C. Elkan, Learning and making decisions when costs and probabilities are both unknown, Technical Report CS2001-0664, UCSD, 2001.
    • B. Zadrozny, C. Elkan, Learning and making decisions when costs and probabilities are both unknown, Technical Report CS2001-0664, UCSD, 2001.
  • 59
    • 31344442851 scopus 로고    scopus 로고
    • Training cost-sensitive neural networks with methods addressing the class imbalance problem
    • Zhou Z.-H., and Liu X.-Y. Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Transactions on Knowledge and Data Engineering 18 1 (2006) 63-77
    • (2006) IEEE Transactions on Knowledge and Data Engineering , vol.18 , Issue.1 , pp. 63-77
    • Zhou, Z.-H.1    Liu, X.-Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.