메뉴 건너뛰기




Volumn 716, Issue , 2011, Pages 23-38

Computer-Aided Drug Discovery and Development

Author keywords

Computer aided drug discovery; High throughput screening; Ligand based drug design; Molecular docking; Quantitative structure activity relationship; Structure based drug design, Virtual screening

Indexed keywords

LIGAND;

EID: 79956188485     PISSN: 10643745     EISSN: 19406029     Source Type: Book Series    
DOI: 10.1007/978-1-61779-012-6_2     Document Type: Chapter
Times cited : (73)

References (83)
  • 1
    • 0037237884 scopus 로고    scopus 로고
    • How much gets there and what does it do?: The need for better pharmacokinetic and pharmacodynamic end-points in contemporary drug discovery and development
    • Workman, P. (2003). How much gets there and what does it do?: The need for better pharmacokinetic and pharmacodynamic end-points in contemporary drug discovery and development. Curr Pharm Des. 9: 891–902.
    • (2003) Curr Pharm Des , vol.9 , pp. 891-902
    • Workman, P.1
  • 2
    • 0842274205 scopus 로고    scopus 로고
    • Rediscovering the sweet spot in drug discovery
    • Brown, D. & Superti-Furga, G. (2003). Rediscovering the sweet spot in drug discovery. Drug Discov Today. 8: 1067–1077.
    • (2003) Drug Discov Today , vol.8 , pp. 1067-1077
    • Brown, D.1    Superti-Furga, G.2
  • 3
    • 0034984060 scopus 로고    scopus 로고
    • Computer-assisted drug development (CADD): An emerging technology for designing first-time-in-man and proof-of-concept studies from preclin-ical experiments
    • Gomeni, R., Bani, M., D’Angeli, C., Corsi, M. & Bye, A. (2001). Computer-assisted drug development (CADD): an emerging technology for designing first-time-in-man and proof-of-concept studies from preclin-ical experiments. Eur J Pharm Sci. 13: 261–270.
    • (2001) Eur J Pharm Sci , vol.13 , pp. 261-270
    • Gomeni, R.1    Bani, M.2    D’Angeli, C.3    Corsi, M.4    Bye, A.5
  • 6
    • 5644236834 scopus 로고    scopus 로고
    • Pharmacophore modeling and three dimensional database searching for drug design using catalyst: Recent advances
    • Guner, O., Clement, O. & Kurogi, Y. (2004). Pharmacophore modeling and three dimensional database searching for drug design using catalyst: Recent advances. Curr Med Chem. 11: 2991–3005.
    • (2004) Curr Med Chem , vol.11 , pp. 2991-3005
    • Guner, O.1    Clement, O.2    Kurogi, Y.3
  • 8
    • 0242522177 scopus 로고    scopus 로고
    • QSAR – a piece of drug design
    • Parvu, L. (2003). QSAR – a piece of drug design. J Cell Mol Med. 7: 333–335.
    • (2003) J Cell Mol Med , vol.7 , pp. 333-335
    • Parvu, L.1
  • 9
    • 3242693196 scopus 로고    scopus 로고
    • Virtual combinatorial chemistry and in silico screening: Efficient tools for lead structure discovery?
    • Langer, T. & Wolber, G. (2004). Virtual combinatorial chemistry and in silico screening: Efficient tools for lead structure discovery? Pure App Chem. 76: 991–996.
    • (2004) Pure App Chem , vol.76 , pp. 991-996
    • Langer, T.1    Wolber, G.2
  • 10
    • 0347755449 scopus 로고    scopus 로고
    • Predicting molecular interactions in silico: I. A guide to pharmacophore identification and its applications to drug design
    • Dror, O., Shulman-Peleg, A., Nussinov, R. & Wolfson, H. J. (2004). Predicting molecular interactions in silico: I. A guide to pharmacophore identification and its applications to drug design. Curr Med Chem. 11: 71–90.
    • (2004) Curr Med Chem , vol.11 , pp. 71-90
    • Dror, O.1    Shulman-Peleg, A.2    Nussinov, R.3    Wolfson, H.J.4
  • 11
    • 0142026020 scopus 로고    scopus 로고
    • Quantitative structure-activity relationship methods: Perspectives on drug discovery and toxicology
    • Perkins, R., Fang, H., Tong, W. D. & Welsh, W. J. (2003). Quantitative structure-activity relationship methods: Perspectives on drug discovery and toxicology. Environ Toxicol Chem. 22: 1666–1679.
    • (2003) Environ Toxicol Chem , vol.22 , pp. 1666-1679
    • Perkins, R.1    Fang, H.2    Tong, W.D.3    Welsh, W.J.4
  • 12
    • 0035003411 scopus 로고    scopus 로고
    • Identification of the descriptor pharma-cophores using variable selection QSAR: Applications to database mining
    • Tropsha, A. & Zhang, W. F. (2001). Identification of the descriptor pharma-cophores using variable selection QSAR: Applications to database mining. Curr Pharm Design. 7: 599–612.
    • (2001) Curr Pharm Design , vol.7 , pp. 599-612
    • Tropsha, A.1    Zhang, W.F.2
  • 13
    • 0033452603 scopus 로고    scopus 로고
    • Role of hydrophobic effects in mechanistic QSAR
    • Leo, A. J. & Hansch, C. (1999). Role of hydrophobic effects in mechanistic QSAR. Perspect Drug Discov Design. 17: 1–25.
    • (1999) Perspect Drug Discov Design , vol.17 , pp. 1-25
    • Leo, A.J.1    Hansch, C.2
  • 14
    • 0037252016 scopus 로고    scopus 로고
    • Searching for allosteric effects via QSAR. Part II
    • Garg, R., Kurup, A., Mekapati, S. B. & Hansch, C. (2003). Searching for allosteric effects via QSAR. Part II. Bioorg Med Chem. 11: 621–628.
    • (2003) Bioorg Med Chem , vol.11 , pp. 621-628
    • Garg, R.1    Kurup, A.2    Mekapati, S.B.3    Hansch, C.4
  • 15
    • 0027769667 scopus 로고
    • The generation of molecular-structures from a graph-based Qsar equation
    • Kier, L. B. & Hall, L. H. (1993). The generation of molecular-structures from a graph-based Qsar equation. Quant Struct Act Relat. 12: 383–388.
    • (1993) Quant Struct Act Relat , vol.12 , pp. 383-388
    • Kier, L.B.1    Hall, L.H.2
  • 17
    • 0025615749 scopus 로고
    • Quantitative structure retention relationship studies of odor-active aliphatic-compounds with oxygen-containing functional-groups
    • Anker, L. S., Jurs, P. C. & Edwards, P. A. (1990). Quantitative structure retention relationship studies of odor-active aliphatic-compounds with oxygen-containing functional-groups. Anal Chem. 62: 2676–2684.
    • (1990) Anal Chem , vol.62 , pp. 2676-2684
    • Anker, L.S.1    Jurs, P.C.2    Edwards, P.A.3
  • 18
    • 0019970373 scopus 로고
    • Distance geometry analysis of the benzodiazepine binding-site
    • Crippen, G. M. (1982). Distance geometry analysis of the benzodiazepine binding-site. Mol Pharmacol. 22: 11–19.
    • (1982) Mol Pharmacol , vol.22 , pp. 11-19
    • Crippen, G.M.1
  • 19
    • 33847086085 scopus 로고
    • A Qsar Investigation of dihydrofolate-reductase inhibition by baker triazines based upon molecular shape-analysis
    • Hopfinger, A. J. (1980). A Qsar Investigation of dihydrofolate-reductase inhibition by baker triazines based upon molecular shape-analysis. J Am Chem Soc. 102: 7196–7206.
    • (1980) J am Chem Soc , vol.102 , pp. 7196-7206
    • Hopfinger, A.J.1
  • 20
    • 84988053783 scopus 로고
    • Voronoi binding-site models – calculation of binding modes and influence of drug-binding data accuracy
    • Boulu, L. G. & Crippen, G. M. (1989). Voronoi binding-site models – calculation of binding modes and influence of drug-binding data accuracy. J Comb Chem. 10: 673–682.
    • (1989) J Comb Chem , vol.10 , pp. 673-682
    • Boulu, L.G.1    Crippen, G.M.2
  • 21
    • 0023751431 scopus 로고
    • Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins
    • Cramer, R. D., III, Patterson, D. E. & Bunce, J. D. (1988). Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc. 110: 5959–5967.
    • (1988) J am Chem Soc , vol.110 , pp. 5959-5967
    • Cramer, R.D.1    Patterson, D.E.2    Bunce, J.D.3
  • 22
    • 0026738394 scopus 로고
    • Application of neural networks – quantitative structure-activity-relationships of the derivatives of 2,4-diamino-5-(substituted-benzyl)pyrimi-dines as Dhfr inhibitors
    • So, S. S. & Richards, W. G. (1992). Application of neural networks – quantitative structure-activity-relationships of the derivatives of 2,4-diamino-5-(substituted-benzyl)pyrimi-dines as Dhfr inhibitors. J Med Chem. 35: 3201–3207.
    • (1992) J Med Chem , vol.35 , pp. 3201-3207
    • So, S.S.1    Richards, W.G.2
  • 24
    • 0029623184 scopus 로고
    • Computational methods to predict binding free energy in ligand-receptor complexes
    • Ajay, A. & Murcko, M. A. (1995). Computational methods to predict binding free energy in ligand-receptor complexes. J Med Chem. 38: 4953–4967.
    • (1995) J Med Chem , vol.38 , pp. 4953-4967
    • Ajay, A.1    Murcko, M.A.2
  • 25
    • 0026075594 scopus 로고
    • Applications of neural networks in quantitative structure-activity-relationships of dihydrofolate-reductase inhibitors
    • Andrea, T. A. & Kalayeh, H. (1991). Applications of neural networks in quantitative structure-activity-relationships of dihydrofolate-reductase inhibitors. J Med Chem. 34: 2824–2836.
    • (1991) J Med Chem , vol.34 , pp. 2824-2836
    • Andrea, T.A.1    Kalayeh, H.2
  • 26
    • 0026303502 scopus 로고
    • A machine learning approach to computer-aided molecular design
    • Bolis, G., Dipace, L. & Fabrocini, F. (1991). A machine learning approach to computer-aided molecular design. J Comput Aided Mol Des. 5: 617–628.
    • (1991) J Comput Aided Mol Des , vol.5 , pp. 617-628
    • Bolis, G.1    Dipace, L.2    Fabrocini, F.3
  • 27
    • 0026459988 scopus 로고
    • Drug design by machine learning – the use of inductive logic programming to model the structure-activity-relationships of trimethoprim analogs binding to dihydrofolate-reductase
    • King, R. D., Muggleton, S., Lewis, R. A. & Sternberg, M. J. E. (1992). Drug design by machine learning – the use of inductive logic programming to model the structure-activity-relationships of trimethoprim analogs binding to dihydrofolate-reductase. Proc Natl Acad Sci U S A. 89: 11322–11326.
    • (1992) Proc Natl Acad Sci U S A , vol.89 , pp. 11322-11326
    • King, R.D.1    Muggleton, S.2    Lewis, R.A.3    Sternberg, M.J.E.4
  • 29
    • 0000378338 scopus 로고    scopus 로고
    • Novel variable selection quantitative structure-property relationship approach based on the k-nearest-neighbor principle
    • Zheng, W. F. & Tropsha, A. (2000). Novel variable selection quantitative structure-property relationship approach based on the k-nearest-neighbor principle. J Chem Inf Comput Sci. 40: 185–194.
    • (2000) J Chem Inf Comput Sci , vol.40 , pp. 185-194
    • Zheng, W.F.1    Tropsha, A.2
  • 30
    • 1842810088 scopus 로고    scopus 로고
    • An accurate QSPR study of O-H bond dissociation energy in substituted phenols based on support vector machines
    • Xue, C. X., Zhang, R. S., Liu, H. X., Yao, X. J., Liu, M. C., Hu, Z. D. & Fan, B. T. (2004). An accurate QSPR study of O-H bond dissociation energy in substituted phenols based on support vector machines. J Chem Inf Comput Sci. 44: 669–677.
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 669-677
    • Xue, C.X.1    Zhang, R.S.2    Liu, H.X.3    Yao, X.J.4    Liu, M.C.5    Hu, Z.D.6    Fan, B.T.7
  • 31
    • 4043071270 scopus 로고    scopus 로고
    • Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression
    • Yao, X. J., Panaye, A., Doucet, J. P., Zhang, R. S., Chen, H. F., Liu, M. C., Hu, Z. D. & Fan, B. T. (2004). Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression. J Chem Inf Comput Sci. 44: 1257–1266.
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 1257-1266
    • Yao, X.J.1    Panaye, A.2    Doucet, J.P.3    Zhang, R.S.4    Chen, H.F.5    Liu, M.C.6    Hu, Z.D.7    Fan, B.T.8
  • 33
    • 0035860537 scopus 로고    scopus 로고
    • Machine learning for science: State of the art and future prospects
    • Mjolsness, E. & DeCoste, D. (2001). Machine learning for science: State of the art and future prospects. Science 293: 2051–2055.
    • (2001) Science , vol.293 , pp. 2051-2055
    • Mjolsness, E.1    Decoste, D.2
  • 35
    • 0042171659 scopus 로고    scopus 로고
    • Machine learning methods in QSAR modelling
    • Schneider, G. & Downs, G. (2003). Machine learning methods in QSAR modelling. QSAR Comb Sci. 22: 485–486.
    • (2003) QSAR Comb Sci , vol.22 , pp. 485-486
    • Schneider, G.1    Downs, G.2
  • 36
    • 0037710201 scopus 로고    scopus 로고
    • Machine learning in the Genomics era – Editorial: Methods in functional genomics
    • Sebastiani, P., Kohane, I. S. & Ramoni, M. F. (2003). Machine learning in the Genomics era – Editorial: Methods in functional genomics. Machine Learning 52: 5–9.
    • (2003) Machine Learning , vol.52 , pp. 5-9
    • Sebastiani, P.1    Kohane, I.S.2    Ramoni, M.F.3
  • 37
    • 35248885574 scopus 로고    scopus 로고
    • Feature construction and selection using Genetic Programming and a Genetic Algorithm
    • Smith, M. G. & Bull, L. (2003). Feature construction and selection using Genetic Programming and a Genetic Algorithm. Genetic Programming, Proceedings 2610, 229–237.
    • (2003) Genetic Programming, Proceedings , vol.2610 , pp. 229-237
    • Smith, M.G.1    Bull, L.2
  • 38
    • 85139120150 scopus 로고    scopus 로고
    • Discovery of toxicological patterns with lazy learning. Knowledge-Based Intellignet Information and Engineering Systems
    • Pt
    • Armengol, E. & Plaza, E. (2003). Discovery of toxicological patterns with lazy learning. Knowledge-Based Intellignet Information and Engineering Systems, Pt 2, Proceedings 2774, 919–926.
    • (2003) Proceedings , vol.2 , pp. 919-926
    • Armengol, E.1    Plaza, E.2
  • 39
    • 33646251585 scopus 로고    scopus 로고
    • Chemometric analysis of ligand receptor complementarity: Identifying complementary ligands based on receptor information (CoLiBRI)
    • Oloff, S., Zhang, S., Sukumar, N., Breneman, C. & Tropsha, A. (2006). Chemometric analysis of ligand receptor complementarity: identifying complementary ligands based on receptor information (CoLiBRI). J Chem Inf Model. 46: 844–851.
    • (2006) J Chem Inf Model , vol.46 , pp. 844-851
    • Oloff, S.1    Zhang, S.2    Sukumar, N.3    Breneman, C.4    Tropsha, A.5
  • 40
    • 33646462126 scopus 로고    scopus 로고
    • Development of quantitative struc-ture-binding affinity relationship models based on novel geometrical chemical descriptors of the protein-ligand interfaces
    • Zhang, S., Golbraikh, A. & Tropsha, A. (2006). Development of quantitative struc-ture-binding affinity relationship models based on novel geometrical chemical descriptors of the protein-ligand interfaces. J Med Chem. 49: 2713–2724.
    • (2006) J Med Chem , vol.49 , pp. 2713-2724
    • Zhang, S.1    Golbraikh, A.2    Tropsha, A.3
  • 41
    • 33750321978 scopus 로고    scopus 로고
    • A novel automated lazy learning QSAR (ALL-QSAR) approach: Method development, applications, and virtual screening of chemical databases using validated ALL-QSAR models
    • Zhang, S., Golbraikh, A., Oloff, S., Kohn, H. & Tropsha, A. (2006). A novel automated lazy learning QSAR (ALL-QSAR) approach: method development, applications, and virtual screening of chemical databases using validated ALL-QSAR models. J Chem Inf Model 46: 1984–1995.
    • (2006) J Chem Inf Model , vol.46 , pp. 1984-1995
    • Zhang, S.1    Golbraikh, A.2    Oloff, S.3    Kohn, H.4    Tropsha, A.5
  • 42
    • 33947228423 scopus 로고    scopus 로고
    • Antitumor agents 252. Application of validated QSAR models to database mining: Discovery of novel tylophorine derivatives as potential anticancer agents
    • Zhang, S., Wei, L., Bastow, K., Zheng, W., Brossi, A., Lee, K. H. & Tropsha, A. (2007). Antitumor agents 252. Application of validated QSAR models to database mining: discovery of novel tylophorine derivatives as potential anticancer agents. J Comput Aided Mol Des. 21: 97–112.
    • (2007) J Comput Aided Mol Des , vol.21 , pp. 97-112
    • Zhang, S.1    Wei, L.2    Bastow, K.3    Zheng, W.4    Brossi, A.5    Lee, K.H.6    Tropsha, A.7
  • 43
    • 34249846647 scopus 로고    scopus 로고
    • Artificial intelligence approaches for rational drug design and discovery
    • Duch, W., Swaminathan, K. & Meller, J. (2007). Artificial intelligence approaches for rational drug design and discovery. Curr Pharm Des. 13: 1497–1508.
    • (2007) Curr Pharm Des , vol.13 , pp. 1497-1508
    • Duch, W.1    Swaminathan, K.2    Meller, J.3
  • 44
    • 0036589825 scopus 로고    scopus 로고
    • Progress in computational methods for the prediction of ADMET properties
    • Clark, D. E. & Grootenhuis, P. D. (2002). Progress in computational methods for the prediction of ADMET properties. Curr Opin Drug Discov Dev. 5: 382–390.
    • (2002) Curr Opin Drug Discov Dev , vol.5 , pp. 382-390
    • Clark, D.E.1    Grootenhuis, P.D.2
  • 45
    • 3242885550 scopus 로고    scopus 로고
    • Predictive ADMET studies, the challenges and the opportunities
    • Davis, A. M. & Riley, R. J. (2004). Predictive ADMET studies, the challenges and the opportunities. Curr Opin Chem Biol. 8: 378–386.
    • (2004) Curr Opin Chem Biol , vol.8 , pp. 378-386
    • Davis, A.M.1    Riley, R.J.2
  • 46
    • 36849009228 scopus 로고    scopus 로고
    • Machine learning approaches for predicting compounds that interact with therapeutic and ADMET related proteins
    • Li, H., Yap, C. W., Ung, C. Y., Xue, Y., Li, Z. R., Han, L. Y., Lin, H. H. & Chen, Y. Z. (2007). Machine learning approaches for predicting compounds that interact with therapeutic and ADMET related proteins. J Pharm Sci. 96: 2838–2860.
    • (2007) J Pharm Sci , vol.96 , pp. 2838-2860
    • Li, H.1    Yap, C.W.2    Ung, C.Y.3    Xue, Y.4    Li, Z.R.5    Han, L.Y.6    Lin, H.H.7    Chen, Y.Z.8
  • 47
    • 2442700335 scopus 로고    scopus 로고
    • Prediction of torsade-causing potential of drugs by support vector machine approach
    • Yap, C. W., Cai, C. Z., Xue, Y. & Chen, Y. Z. (2004). Prediction of torsade-causing potential of drugs by support vector machine approach. Toxicol Sci. 79: 170–177.
    • (2004) Toxicol Sci , vol.79 , pp. 170-177
    • Yap, C.W.1    Cai, C.Z.2    Xue, Y.3    Chen, Y.Z.4
  • 48
    • 0043069489 scopus 로고    scopus 로고
    • Drug research: Myths, hype and reality
    • Kubinyi, H. (2003). Drug research: myths, hype and reality. Nat Rev Drug Discov. 2: 665–668.
    • (2003) Nat Rev Drug Discov , vol.2 , pp. 665-668
    • Kubinyi, H.1
  • 49
    • 0032440681 scopus 로고    scopus 로고
    • Structure-based drug design approaches for predicting binding affinities of HIV1 protease inhibitors
    • Reddy, M. R. & Erion, M. D. (1998). Structure-based drug design approaches for predicting binding affinities of HIV1 protease inhibitors. J Enzyme Inhib. 14: 1–14.
    • (1998) J Enzyme Inhib , vol.14 , pp. 1-14
    • Reddy, M.R.1    Erion, M.D.2
  • 50
    • 0036520840 scopus 로고    scopus 로고
    • A review of protein-small molecule docking methods
    • Taylor, R. D., Jewsbury, P. J. & Essex, J. W. (2002). A review of protein-small molecule docking methods. J Comput Aided Mol Des. 16: 151–166.
    • (2002) J Comput Aided Mol Des , vol.16 , pp. 151-166
    • Taylor, R.D.1    Jewsbury, P.J.2    Essex, J.W.3
  • 51
  • 52
    • 0348227698 scopus 로고    scopus 로고
    • The impact of structure-guided drug design on clinical agents
    • Hardy, L. W. & Malikayil, A. (2003). The impact of structure-guided drug design on clinical agents. Curr Drug Discov. 3: 15–20.
    • (2003) Curr Drug Discov , vol.3 , pp. 15-20
    • Hardy, L.W.1    Malikayil, A.2
  • 53
    • 0842304458 scopus 로고    scopus 로고
    • Inhibitors of serine proteases as potential therapeutic agents: The road from thrombin to tryptase to cathepsin G
    • Maryanoff, B. E. (2004). Inhibitors of serine proteases as potential therapeutic agents: The road from thrombin to tryptase to cathepsin G. J Med Chem. 47: 769–787.
    • (2004) J Med Chem , vol.47 , pp. 769-787
    • Maryanoff, B.E.1
  • 55
    • 69949181643 scopus 로고    scopus 로고
    • Computational modeling of novel inhibitors targeting the Akt pleckstrin homology domain
    • Du-Cuny, L., Song, Z., Moses, S., Powis, G., Mash, E. A., Meuillet, E. J. & Zhang, S. (2009). Computational modeling of novel inhibitors targeting the Akt pleckstrin homology domain. Bioorg Med Chem. 17: 6983–6992.
    • (2009) Bioorg Med Chem , vol.17 , pp. 6983-6992
    • Du-Cuny, L.1    Song, Z.2    Moses, S.3    Powis, G.4    Mash, E.A.5    Meuillet, E.J.6    Zhang, S.7
  • 56
    • 54049116732 scopus 로고    scopus 로고
    • Discovery of a novel class of AKT pleckstrin homology domain inhibitors
    • Mahadevan, D., Powis, G., Mash, E. A., et al. (2008). Discovery of a novel class of AKT pleckstrin homology domain inhibitors. Mol Cancer Ther. 7: 2621–2632.
    • (2008) Mol Cancer Ther , vol.7 , pp. 2621-2632
    • Mahadevan, D.1    Powis, G.2    Mash, E.A.3
  • 58
    • 0042430607 scopus 로고    scopus 로고
    • Solution structure of a peptide derived from the beta subunit of LFA-1
    • Zhang, S., Ying, W. S., Siahaan, T. J. & Jois, S. D. S. (2003). Solution structure of a peptide derived from the beta subunit of LFA-1. Peptides. 24: 827–835.
    • (2003) Peptides , vol.24 , pp. 827-835
    • Zhang, S.1    Ying, W.S.2    Siahaan, T.J.3    Jois, S.D.S.4
  • 59
    • 40749120187 scopus 로고    scopus 로고
    • DOVIS: An implementation for high-throughput virtual screening using AutoDock
    • Zhang, S., Kumar, K., Jiang, X., Wallqvist, A. & Reifman, J. (2008). DOVIS: an implementation for high-throughput virtual screening using AutoDock. BMC Bioinformatics 9: 126.
    • (2008) BMC Bioinformatics , vol.9
    • Zhang, S.1    Kumar, K.2    Jiang, X.3    Wallqvist, A.4    Reifman, J.5
  • 60
    • 57349167243 scopus 로고    scopus 로고
    • HIV-1 protease function and structure studies with the simplicial neighborhood analysis of protein packing method
    • Zhang, S., Kaplan, A. H. & Tropsha, A. (2008). HIV-1 protease function and structure studies with the simplicial neighborhood analysis of protein packing method. Proteins. 73: 742–753.
    • (2008) Proteins , vol.73 , pp. 742-753
    • Zhang, S.1    Kaplan, A.H.2    Tropsha, A.3
  • 61
    • 67649205756 scopus 로고    scopus 로고
    • Development and evaluation of a new statistical model for structure-based high-throughput virtual screening
    • Zhang, S. & Du-Cuny, L. (2009). Development and evaluation of a new statistical model for structure-based high-throughput virtual screening. Int J Bioinform Res Appl. 5: 269–279.
    • (2009) Int J Bioinform Res Appl , vol.5 , pp. 269-279
    • Zhang, S.1    Du-Cuny, L.2
  • 62
    • 8844263008 scopus 로고    scopus 로고
    • Docking and scoring in virtual screening for drug discovery: Methods and applications
    • Kitchen, D. B., Decornez, H., Furr, J. R. & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat Rev Drug Discov. 3: 935–949.
    • (2004) Nat Rev Drug Discov , vol.3 , pp. 935-949
    • Kitchen, D.B.1    Decornez, H.2    Furr, J.R.3    Bajorath, J.4
  • 63
    • 11644261806 scopus 로고    scopus 로고
    • Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function
    • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K. & Olson, A. J. (1999). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem. 19: 1639–1662.
    • (1999) J Comput Chem , vol.19 , pp. 1639-1662
    • Morris, G.M.1    Goodsell, D.S.2    Halliday, R.S.3    Huey, R.4    Hart, W.E.5    Belew, R.K.6    Olson, A.J.7
  • 64
    • 0036606483 scopus 로고    scopus 로고
    • Principles of docking: An overview of search algorithms and a guide to scoring functions
    • Halperin, I., Ma, B., Wolfson, H. & Nussinov, R. (2002). Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins 47: 409–443.
    • (2002) Proteins , vol.47 , pp. 409-443
    • Halperin, I.1    Ma, B.2    Wolfson, H.3    Nussinov, R.4
  • 65
    • 0001139413 scopus 로고    scopus 로고
    • Automated flexible ligand docking method and its application for database search
    • Makino, S. & Kuntz, I. D. (1997). Automated flexible ligand docking method and its application for database search. J Comb Chem. 18: 1812–1825.
    • (1997) J Comb Chem , vol.18 , pp. 1812-1825
    • Makino, S.1    Kuntz, I.D.2
  • 66
    • 0025785057 scopus 로고
    • Protein docking and complementarity
    • Shoichet, B. K. & Kuntz, I. D. (1991). Protein docking and complementarity. J Mol Biol. 221: 327–346.
    • (1991) J Mol Biol , vol.221 , pp. 327-346
    • Shoichet, B.K.1    Kuntz, I.D.2
  • 67
    • 0033388757 scopus 로고    scopus 로고
    • Ligand docking and screening with FlexX
    • Kramer, B., Metz, G., Rarey, M. & Lengauer, T. (1999). Ligand docking and screening with FlexX. Med Chem Res. 9: 463–478.
    • (1999) Med Chem Res , vol.9 , pp. 463-478
    • Kramer, B.1    Metz, G.2    Rarey, M.3    Lengauer, T.4
  • 68
    • 0030599010 scopus 로고    scopus 로고
    • A fast flexible docking method using an incremental construction algorithm
    • Rarey, M., Kramer, B., Lengauer, T. & Klebe, G. (1996). A fast flexible docking method using an incremental construction algorithm. J Mol Biol. 261: 470–489.
    • (1996) J Mol Biol , vol.261 , pp. 470-489
    • Rarey, M.1    Kramer, B.2    Lengauer, T.3    Klebe, G.4
  • 69
    • 0029705324 scopus 로고    scopus 로고
    • Automated docking of flexible ligands: Applications of AutoDock
    • Goodsell, D. S., Morris, G. M. & Olson, A. J. (1996). Automated docking of flexible ligands: applications of AutoDock. J Mol Recognit. 9: 1–5.
    • (1996) J Mol Recognit , vol.9 , pp. 1-5
    • Goodsell, D.S.1    Morris, G.M.2    Olson, A.J.3
  • 70
    • 0029011701 scopus 로고    scopus 로고
    • A second generation force field for the simulation of proteins, nucleic acids and organic molecules
    • Cornell, W. D., Cieplak, P., Bayly, C. I., et al. (1996). A second generation force field for the simulation of proteins, nucleic acids and organic molecules. J Am Chem Soc. 117: 5179–5197.
    • (1996) J am Chem Soc , vol.117 , pp. 5179-5197
    • Cornell, W.D.1    Cieplak, P.2    Bayly, C.I.3
  • 71
    • 0242593434 scopus 로고    scopus 로고
    • Development and current status of the CHARMM force field for nucleic acids
    • MacKerell, A. D., Jr., Banavali, N. & Foloppe, N. (2000). Development and current status of the CHARMM force field for nucleic acids. Biopolymers. 56: 257–265.
    • (2000) Biopolymers , vol.56 , pp. 257-265
    • Mackerell, A.D.1    Banavali, N.2    Foloppe, N.3
  • 72
    • 0037571112 scopus 로고    scopus 로고
    • Merck molecular force field: 1. Basis, form, scope, parameterization, and performance of MMFF94
    • Halgren, T. A. (1996). Merck molecular force field: 1. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem. 17: 490–519.
    • (1996) J Comput Chem , vol.17 , pp. 490-519
    • Halgren, T.A.1
  • 73
    • 0032939345 scopus 로고    scopus 로고
    • Ligand solvation in molecular docking
    • Shoichet, B. K., Leach, A. R. & Kuntz, I. D. (1999). Ligand solvation in molecular docking. Proteins. 34: 4–16.
    • (1999) Proteins , vol.34 , pp. 4-16
    • Shoichet, B.K.1    Leach, A.R.2    Kuntz, I.D.3
  • 74
    • 0027027467 scopus 로고
    • Ludi – rule-based automatic design of new substituents for enzyme-inhibitor leads
    • Bohm, H. J. (1992). Ludi – rule-based automatic design of new substituents for enzyme-inhibitor leads. J Comput Aided Mol Des. 6: 593–606.
    • (1992) J Comput Aided Mol Des , vol.6 , pp. 593-606
    • Bohm, H.J.1
  • 75
    • 0026813925 scopus 로고
    • The computer-program Ludi – a new method for the denovo design of enzyme-inhibitors
    • Bohm, H. J. (1992). The computer-program Ludi – a new method for the denovo design of enzyme-inhibitors. J Comput Aided Mol Des. 6: 61–78.
    • (1992) J Comput Aided Mol Des , vol.6 , pp. 61-78
    • Bohm, H.J.1
  • 76
    • 0032112137 scopus 로고    scopus 로고
    • Prediction of binding constants of protein ligands: A fast method for the prioritization of hits obtained from de novo design or 3D database search programs
    • Bohm, H. J. (1998). Prediction of binding constants of protein ligands: a fast method for the prioritization of hits obtained from de novo design or 3D database search programs. J Comput Aided Mol Des. 12: 309–323.
    • (1998) J Comput Aided Mol Des , vol.12 , pp. 309-323
    • Bohm, H.J.1
  • 77
    • 0029995624 scopus 로고    scopus 로고
    • VALIDATE: A new method for the receptor-based prediction of binding affinities of novel ligands
    • Head, R. D., Smythe, M. L., Oprea, T. I., Waller, C. L., Green, S. M. & Marshall, G. R. (1996). VALIDATE: a new method for the receptor-based prediction of binding affinities of novel ligands. J Am Chem Soc. 118: 3959–3969.
    • (1996) J am Chem Soc , vol.118 , pp. 3959-3969
    • Head, R.D.1    Smythe, M.L.2    Oprea, T.I.3    Waller, C.L.4    Green, S.M.5    Marshall, G.R.6
  • 78
    • 0034645763 scopus 로고    scopus 로고
    • Knowledge-based scoring function to predict protein-ligand interactions
    • Gohlke, H., Hendlich, M. & Klebe, G. (2000). Knowledge-based scoring function to predict protein-ligand interactions. J Mol Biol. 295: 337–356.
    • (2000) J Mol Biol , vol.295 , pp. 337-356
    • Gohlke, H.1    Hendlich, M.2    Klebe, G.3
  • 79
    • 0000934205 scopus 로고    scopus 로고
    • SMoG: De novo design method based on simple, fast, and accurate free energy estimates. 1. Methodology and supporting evidence
    • DeWitte, R. S. & Shakhnovich, E. I. (1996). SMoG: de novo design method based on simple, fast, and accurate free energy estimates. 1. Methodology and supporting evidence. J Am Chem Soc. 118: 11733–11744.
    • (1996) J am Chem Soc , vol.118 , pp. 11733-11744
    • Dewitte, R.S.1    Shakhnovich, E.I.2
  • 80
    • 0033545622 scopus 로고    scopus 로고
    • A general and fast scoring function for protein-ligand interactions: A simplified potential approach
    • Muegge, I. & Martin, Y. C. (1999). A general and fast scoring function for protein-ligand interactions: a simplified potential approach. J Med Chem. 42: 791–804.
    • (1999) J Med Chem , vol.42 , pp. 791-804
    • Muegge, I.1    Martin, Y.C.2
  • 81
    • 0000823044 scopus 로고    scopus 로고
    • BLEEP-potential of mean force describing protein-ligand interactions: I. Generating potential
    • Mitchell, J. B. O., Laskowski, R. A., Alex, A. & Thornton, J. M. (1999). BLEEP-potential of mean force describing protein-ligand interactions: I. Generating potential. J Comput Chem. 20: 1165–1176.
    • (1999) J Comput Chem , vol.20 , pp. 1165-1176
    • Mitchell, J.B.O.1    Laskowski, R.A.2    Alex, A.3    Thornton, J.M.4
  • 82
    • 0027076526 scopus 로고
    • High-performance computing, high-speed networks, and configurable computing environments: Progress toward fully distributed computing
    • Johnston, W. E., Jacobson, V. L., Loken, S. C., Robertson, D. W. & Tierney, B. L. (1992). High-performance computing, high-speed networks, and configurable computing environments: progress toward fully distributed computing. Crit Rev Biomed Eng. 20: 315–354.
    • (1992) Crit Rev Biomed Eng , vol.20 , pp. 315-354
    • Johnston, W.E.1    Jacobson, V.L.2    Loken, S.C.3    Robertson, D.W.4    Tierney, B.L.5
  • 83
    • 0042355453 scopus 로고    scopus 로고
    • Rational selection of training and test sets for the development of validated QSAR models
    • Golbraikh, A., Shen, M., Xiao, Z. Y., Xiao, Y. D., Lee, K. H. & Tropsha, A. (2003). Rational selection of training and test sets for the development of validated QSAR models. J Comput Aided Mol Des. 17: 241–253.
    • (2003) J Comput Aided Mol Des , vol.17 , pp. 241-253
    • Golbraikh, A.1    Shen, M.2    Xiao, Z.Y.3    Xiao, Y.D.4    Lee, K.H.5    Tropsha, A.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.