-
1
-
-
21844457672
-
Learning a Mahalanobis metric from equivalence constraints
-
Bar-Hillel A., Hertz T., Shental N., Weinshall D. Learning a Mahalanobis metric from equivalence constraints. Journal of Machine Learning Research 2005, 6:937-965.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 937-965
-
-
Bar-Hillel, A.1
Hertz, T.2
Shental, N.3
Weinshall, D.4
-
2
-
-
12244300524
-
A probabilistic framework for semi-supervised clustering
-
Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
-
S. Basu, M. Bilenko, R.J. Mooney, A probabilistic framework for semi-supervised clustering, in: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2004, pp. 59-68.
-
(2004)
, pp. 59-68
-
-
Basu, S.1
Bilenko, M.2
Mooney, R.J.3
-
3
-
-
79956154486
-
-
Semi-supervised clustering: probabilistic models, algorithms and experiments, Ph.D. Dissertation, University of Texas at Austin.
-
S. Basu, Semi-supervised clustering: probabilistic models, algorithms and experiments, Ph.D. Dissertation, University of Texas at Austin, 2005.
-
(2005)
-
-
Basu, S.1
-
4
-
-
0042378381
-
Laplacian eigenmaps for dimensionality reduction and data representation
-
Belkin M., Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 2003, 15(6):1373-1396.
-
(2003)
Neural Computation
, vol.15
, Issue.6
, pp. 1373-1396
-
-
Belkin, M.1
Niyogi, P.2
-
6
-
-
49049111209
-
-
Semi-supervised discriminant analysis, in: Proceedings of the 11th IEEE International Conference on Computer Vision (ICCV).
-
D. Cai, H. Xiaofei, H. Jiawei, Semi-supervised discriminant analysis, in: Proceedings of the 11th IEEE International Conference on Computer Vision (ICCV), 2007, pp. 1-7.
-
(2007)
, pp. 1-7
-
-
Cai, D.1
Xiaofei, H.2
Jiawei, H.3
-
8
-
-
33646084850
-
Locally linear metric adaptation with application to semi-supervised clustering and image retrieval
-
Chang H., Yeung D.Y. Locally linear metric adaptation with application to semi-supervised clustering and image retrieval. Pattern Recognition 2006, 39:1253-1264.
-
(2006)
Pattern Recognition
, vol.39
, pp. 1253-1264
-
-
Chang, H.1
Yeung, D.Y.2
-
9
-
-
84898956003
-
-
Kernel design using boosting, in: Proceedings of Advances in Neural Information Processing Systems, MIT Press.
-
K. Crammer, J. Keshet, Y. Singer, Kernel design using boosting, in: Proceedings of Advances in Neural Information Processing Systems, vol. 15, MIT Press, 2003, pp. 537-544.
-
(2003)
, vol.15
, pp. 537-544
-
-
Crammer, K.1
Keshet, J.2
Singer, Y.3
-
10
-
-
84898936871
-
On kernel target alignment, in: Proceedings of Advances in Neural Information Processing Systems
-
MIT Press
-
N. Cristianini, J. Kandola, A. Elisseeff, J. Shawe-Taylor, On kernel target alignment, in: Proceedings of Advances in Neural Information Processing Systems, vol. 14, MIT Press, 2002, pp. 367-373.
-
(2002)
, vol.14
, pp. 367-373
-
-
Cristianini, N.1
Kandola, J.2
Elisseeff, A.3
Shawe-Taylor, J.4
-
11
-
-
12244256379
-
Kernel k-means, spectral clustering and normalized cuts
-
I.S. Dhillon, Y. Guan, B. Kulis, Kernel k-means, spectral clustering and normalized cuts, in: Proceedings of the Tenth ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2004, pp. 551-556.
-
(2004)
Proceedings of the Tenth ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)
, pp. 551-556
-
-
Dhillon, I.S.1
Guan, Y.2
Kulis, B.3
-
15
-
-
79956140392
-
-
Flexible metric nearest neighbor classification, Technical Report, Statistics Department, Stanford University.
-
J.H. Friedman, Flexible metric nearest neighbor classification, Technical Report, Statistics Department, Stanford University, 1994.
-
(1994)
-
-
Friedman, J.H.1
-
18
-
-
33845594193
-
Learning distance metrics with contextual constraints for image retrieval
-
Oregon State University, Corvallis, USA.
-
S.C.H. Hoi, W. Liu, M.R. Lyu, W.-Y. Ma, Learning distance metrics with contextual constraints for image retrieval, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Oregon State University, Corvallis, USA, 2006, pp. 2072-2078.
-
(2006)
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 2072-2078
-
-
Hoi, S.C.H.1
Liu, W.2
Lyu, M.R.3
Ma, W.-Y.4
-
19
-
-
34547975734
-
Learning nonparametric kernel matrices from pairwise constraints
-
New York, USA
-
S.C.H. Hoi, R. Jin, M.R. Lyu, Learning nonparametric kernel matrices from pairwise constraints, in: Proceedings of the 24th International Conference on Machine Learning (ICML), New York, USA, 2007, pp. 361-368.
-
(2007)
Proceedings of the 24th International Conference on Machine Learning (ICML)
, pp. 361-368
-
-
Hoi, S.C.H.1
Jin, R.2
Lyu, M.R.3
-
20
-
-
51949106897
-
Semi-supervised distance metric learning for collaborative image retrieval
-
S.C.H. Hoi, W. Liu, S.-F. Chang, Semi-supervised distance metric learning for collaborative image retrieval, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2008, pp. 1-7.
-
(2008)
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 1-7
-
-
Hoi, S.C.H.1
Liu, W.2
Chang, S.-F.3
-
21
-
-
44449138321
-
Toward effective document clustering: a constrained k-means based approach
-
Hu G., Zhou S., Guan J., Hu X. Toward effective document clustering: a constrained k-means based approach. Information processing and management 2008, 44:1397-1409.
-
(2008)
Information processing and management
, vol.44
, pp. 1397-1409
-
-
Hu, G.1
Zhou, S.2
Guan, J.3
Hu, X.4
-
23
-
-
84880821479
-
-
Spectral learning, in:
-
S. Kamvar, D. Klein, C.D. Manning, Spectral learning, in: Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI), 2003, pp. 561-566.
-
(2003)
Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI)
, pp. 561-566
-
-
Kamvar, S.1
Klein, D.2
Manning, C.D.3
-
24
-
-
79956152238
-
-
CLUTO-a clustering toolkit, Technical Report 02-017, Department of Computer Science, University of Minnesota.
-
G. Karypis, CLUTO-a clustering toolkit, Technical Report 02-017, Department of Computer Science, University of Minnesota, 2002.
-
(2002)
-
-
Karypis, G.1
-
25
-
-
9444294778
-
From instance-level constraints to space-level constraints: making the most of prior knowledge in data clustering
-
Sydney, Australia
-
D. Klein, S.D. Kamvar, C. Manning, From instance-level constraints to space-level constraints: making the most of prior knowledge in data clustering, in: Proceedings of the 19th International Conference on Machine Learning (ICML), Sydney, Australia, 2002, pp. 307-314.
-
(2002)
Proceedings of the 19th International Conference on Machine Learning (ICML)
, pp. 307-314
-
-
Klein, D.1
Kamvar, S.D.2
Manning, C.3
-
26
-
-
34250754976
-
-
Learning low-rank kernel matrices, Pittsburg, PA,
-
B. Kulis, M. Sustik, I. Dhillon, Learning low-rank kernel matrices, In: Proceedings of the 23th International Conference on Machine Learning (ICML), Pittsburg, PA, 2006, pp. 505-512.
-
(2006)
Proceedings of the 23th International Conference on Machine Learning (ICML)
, pp. 505-512
-
-
Kulis, B.1
Sustik, M.2
Dhillon, I.3
-
27
-
-
58149202361
-
Semi-supervised graph clustering: a kernel approach
-
Kulis B., Basu S., Dhillon I. Semi-supervised graph clustering: a kernel approach. Machine Learning 2009, 74(1):1-22.
-
(2009)
Machine Learning
, vol.74
, Issue.1
, pp. 1-22
-
-
Kulis, B.1
Basu, S.2
Dhillon, I.3
-
29
-
-
8844278523
-
Learning the kernel matrix with semi-definite programming
-
Lanckriet G.R.G., Cristianini N., Bartlett P., Ghaoui L.E., Jordan M.I. Learning the kernel matrix with semi-definite programming. Journal of Machine Leaning Research 2004, 5(1):27-72.
-
(2004)
Journal of Machine Leaning Research
, vol.5
, Issue.1
, pp. 27-72
-
-
Lanckriet, G.R.G.1
Cristianini, N.2
Bartlett, P.3
Ghaoui, L.E.4
Jordan, M.I.5
-
30
-
-
79956155603
-
-
Clustering, dimensionality reduction, and side information, Ph.D. Dissertation, Michigan University.
-
M.H.C. Law, Clustering, dimensionality reduction, and side information, Ph.D. Dissertation, Michigan University, 2006.
-
(2006)
-
-
Law, M.H.C.1
-
31
-
-
79956149848
-
-
Numerical methods for sparse nonlinear eigenvalue problem, Technical Report, Department of Mathematics, Hamburg University of Technology.
-
H. Voss, Numerical methods for sparse nonlinear eigenvalue problem, Technical Report, Department of Mathematics, Hamburg University of Technology, 2003.
-
(2003)
-
-
Voss, H.1
-
32
-
-
34547980697
-
A transductive framework of distance metric learning by spectral dimensionality reduction
-
Corvallis, OR, USA.
-
F. Li, J. Yang, J. Wang, A transductive framework of distance metric learning by spectral dimensionality reduction, in: Proceedings of the 24th International Conference on Machine Learning (ICML), Corvallis, OR, USA, 2007, pp. 513-520.
-
(2007)
Proceedings of the 24th International Conference on Machine Learning (ICML)
, pp. 513-520
-
-
Li, F.1
Yang, J.2
Wang, J.3
-
33
-
-
56449130871
-
Pairwise constraint propagation by semidefinite programming for semi-supervised classification
-
Z. Li, J. Liu, X. Tang, Pairwise constraint propagation by semidefinite programming for semi-supervised classification, in: Proceedings of the 25th International Conference on Machine Learning (ICML), 2008, pp. 576-583.
-
(2008)
Proceedings of the 25th International Conference on Machine Learning (ICML)
, pp. 576-583
-
-
Li, Z.1
Liu, J.2
Tang, X.3
-
35
-
-
70450267700
-
-
Constrained clustering via spectral regularization, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)
-
Z. Li, J. Liu, X. Tang, Constrained clustering via spectral regularization, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2009, pp. 421-428.
-
(2009)
, pp. 421-428
-
-
Li, Z.1
Liu, J.2
Tang, X.3
-
36
-
-
0001920729
-
Similarity metric learning for a variable-kernel classifier
-
Lowe D.G. Similarity metric learning for a variable-kernel classifier. Neural Computation 1995, 7(1):72-85.
-
(1995)
Neural Computation
, vol.7
, Issue.1
, pp. 72-85
-
-
Lowe, D.G.1
-
38
-
-
0019610270
-
The optimal distance measure for nearest neighbor classification
-
Short R.D., Fukunaga K. The optimal distance measure for nearest neighbor classification. IEEE Transactions on Information Theory 1981, 27(5):622-627.
-
(1981)
IEEE Transactions on Information Theory
, vol.27
, Issue.5
, pp. 622-627
-
-
Short, R.D.1
Fukunaga, K.2
-
40
-
-
77649151199
-
Metric learning for semi-supervised clustering using pairwise constraints and the geometrical structure of data
-
Soleymani Baghshah M., Bagheri Shouraki S. Metric learning for semi-supervised clustering using pairwise constraints and the geometrical structure of data. Intelligent Data Analysis 2009, 13(6):887-899.
-
(2009)
Intelligent Data Analysis
, vol.13
, Issue.6
, pp. 887-899
-
-
Soleymani Baghshah, M.1
Bagheri Shouraki, S.2
-
41
-
-
77949267074
-
Kernel-based metric learning for semi-supervised clustering
-
Soleymani Baghshah M., Bagheri Shouraki S. Kernel-based metric learning for semi-supervised clustering. Neurocomputing 2010, 73:1352-1361.
-
(2010)
Neurocomputing
, vol.73
, pp. 1352-1361
-
-
Soleymani Baghshah, M.1
Bagheri Shouraki, S.2
-
42
-
-
79956114640
-
-
Metric learning with convex optimization, Ph.D. Dissertation, University of Pennsylvania.
-
K.Q. Weinberger, Metric learning with convex optimization, Ph.D. Dissertation, University of Pennsylvania, 2007.
-
(2007)
-
-
Weinberger, K.Q.1
-
43
-
-
84863346514
-
Learning Bregman distance functions and its application for semi-supervised clustering
-
MIT Press, Cambridge, MA, USA
-
Wu L., Jin R., Hoi S.C.H., Zhu J., Yu N. Learning Bregman distance functions and its application for semi-supervised clustering. Advances in Neural Information Processing Systems 2009, MIT Press, Cambridge, MA, USA.
-
(2009)
Advances in Neural Information Processing Systems
-
-
Wu, L.1
Jin, R.2
Hoi, S.C.H.3
Zhu, J.4
Yu, N.5
-
44
-
-
49449088902
-
Learning a Mahalanobis distance metric for data clustering and classification
-
Xiang S., Nie F., Zhang C. Learning a Mahalanobis distance metric for data clustering and classification. Pattern Recognition 2008, 41(12):3600-3612.
-
(2008)
Pattern Recognition
, vol.41
, Issue.12
, pp. 3600-3612
-
-
Xiang, S.1
Nie, F.2
Zhang, C.3
-
45
-
-
84879571292
-
Distance metric learning with application to clustering with side information
-
Proceedings of Advances in Neural Information Processing Systems, MIT Press, Cambridge, MA, USA
-
E.P. Xing, A.Y. Ng, M.I. Jordan, S. Russell, Distance metric learning with application to clustering with side information, in: Proceedings of Advances in Neural Information Processing Systems, vol. 15, MIT Press, Cambridge, MA, USA, 2003, pp. 505-512.
-
(2003)
, vol.15
, pp. 505-512
-
-
Xing, E.P.1
Ng, A.Y.2
Jordan, M.I.3
Russell, S.4
-
46
-
-
79956097692
-
-
Distance metric learning: a comprehensive survey, Technical Report, Michigan State University.
-
L. Yang, R. Jin, Distance metric learning: a comprehensive survey, Technical Report, Michigan State University, 2006.
-
(2006)
-
-
Yang, L.1
Jin, R.2
-
47
-
-
33244489358
-
Extending the relevant component analysis algorithm for metric learning using both positive and negative equivalence constraints
-
Yeung D.Y., Chang H. Extending the relevant component analysis algorithm for metric learning using both positive and negative equivalence constraints. Pattern Recognition 2006, 39:1007-1010.
-
(2006)
Pattern Recognition
, vol.39
, pp. 1007-1010
-
-
Yeung, D.Y.1
Chang, H.2
-
48
-
-
33846040203
-
A Kernel approach for semi-supervised metric learning
-
Yeung D.Y., Chang H. A Kernel approach for semi-supervised metric learning. IEEE Transactions on Neural Networks 2007, 18(1):141-149.
-
(2007)
IEEE Transactions on Neural Networks
, vol.18
, Issue.1
, pp. 141-149
-
-
Yeung, D.Y.1
Chang, H.2
-
49
-
-
55749089518
-
A scalable kernel-based semi-supervised metric learning algorithm with out-of-sample generation ability
-
Yeung D.Y., Chang H., Dai G. A scalable kernel-based semi-supervised metric learning algorithm with out-of-sample generation ability. Neural Computation 2008, 20(11):2839-2861.
-
(2008)
Neural Computation
, vol.20
, Issue.11
, pp. 2839-2861
-
-
Yeung, D.Y.1
Chang, H.2
Dai, G.3
-
50
-
-
79956101120
-
Kernel optimization using pairwise constraints for semi-supervised clustering
-
MIT Press, Cambridge, MA, USA
-
Yan B., Domeniconi C. Kernel optimization using pairwise constraints for semi-supervised clustering. Advances in Neural Information Processing Systems 2009, MIT Press, Cambridge, MA, USA.
-
(2009)
Advances in Neural Information Processing Systems
-
-
Yan, B.1
Domeniconi, C.2
-
51
-
-
74449083176
-
Semi-supervised clustering with metric learning: an adaptive kernel method
-
Yin X., Chen S., Hu E., Zhang D. Semi-supervised clustering with metric learning: an adaptive kernel method. Pattern Recognition 2010, 43:1320-1333.
-
(2010)
Pattern Recognition
, vol.43
, pp. 1320-1333
-
-
Yin, X.1
Chen, S.2
Hu, E.3
Zhang, D.4
-
52
-
-
70049084031
-
-
Simple NPKL: simple non-parametric kernel learning, Proceedings of the 26th International Conference on Machine Learning (ICML), Montreal, Canada.
-
J. Zhuang, I.W. Tsang, S.C.H. Hoi, Simple NPKL: simple non-parametric kernel learning, in: Proceedings of the 26th International Conference on Machine Learning (ICML), Montreal, Canada, 2009.
-
(2009)
-
-
Zhuang, J.1
Tsang, I.W.2
Hoi, S.C.H.3
|