메뉴 건너뛰기




Volumn 44, Issue 4, 2008, Pages 1397-1409

Towards effective document clustering: A constrained K-means based approach

Author keywords

Clustering with prior knowledge; Document clustering; Semi supervised learning; Spectral relaxation

Indexed keywords

CLUSTERING ALGORITHMS; EIGENVALUES AND EIGENFUNCTIONS; OPTIMIZATION; WEB BROWSERS;

EID: 44449138321     PISSN: 03064573     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ipm.2008.03.001     Document Type: Article
Times cited : (56)

References (34)
  • 2
    • 44449138652 scopus 로고    scopus 로고
    • Basu, S., Banerjee, A., & Mooney, R. J. (2002). Semi-supervised clustering by seeding. In Proceedings of international conference on machine learning (pp. 19-26).
    • Basu, S., Banerjee, A., & Mooney, R. J. (2002). Semi-supervised clustering by seeding. In Proceedings of international conference on machine learning (pp. 19-26).
  • 3
    • 12244300524 scopus 로고    scopus 로고
    • Basu, S., Bilenko, M., & Mooney, R. J. (2004). A probabilistic framework for semi-supervised clustering. In Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining (pp. 59-68), Seattle, WA.
    • Basu, S., Bilenko, M., & Mooney, R. J. (2004). A probabilistic framework for semi-supervised clustering. In Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining (pp. 59-68), Seattle, WA.
  • 4
    • 2942534529 scopus 로고    scopus 로고
    • Basu, S., Banerjee, A., & Mooney, R. J. (2004). Active semi-supervision for pairwise constrained clustering. In Proceedings of the SIAM international conference on data mining (pp. 333-344), Lake Beuna Vista, FL.
    • Basu, S., Banerjee, A., & Mooney, R. J. (2004). Active semi-supervision for pairwise constrained clustering. In Proceedings of the SIAM international conference on data mining (pp. 333-344), Lake Beuna Vista, FL.
  • 5
    • 22644451496 scopus 로고    scopus 로고
    • Principal direction divisive partitioning
    • Boley D.L. Principal direction divisive partitioning. Data Mining and Knowledge Discovery 2 4 (1998) 325-344
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.4 , pp. 325-344
    • Boley, D.L.1
  • 7
    • 33750288047 scopus 로고    scopus 로고
    • Davidson, I., Wagstaff, K. L., & Basu, S. (2006). Measuring constraint-set utility for partitional clustering algorithms. In Proceedings of the 17th European conference on machine learning (pp. 115-125).
    • Davidson, I., Wagstaff, K. L., & Basu, S. (2006). Measuring constraint-set utility for partitional clustering algorithms. In Proceedings of the 17th European conference on machine learning (pp. 115-125).
  • 8
    • 0035789644 scopus 로고    scopus 로고
    • Dhillon, I. S. (2001). Co-clustering documents and words using bipartite spectral graph partitioning. In Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining (pp. 269-274), San Francisco, California.
    • Dhillon, I. S. (2001). Co-clustering documents and words using bipartite spectral graph partitioning. In Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining (pp. 269-274), San Francisco, California.
  • 9
    • 0343442766 scopus 로고
    • Knowledge acquisition via incremental conceptual clustering
    • Fisher D.H. Knowledge acquisition via incremental conceptual clustering. Machine Learning 2 2 (1987) 139-172
    • (1987) Machine Learning , vol.2 , Issue.2 , pp. 139-172
    • Fisher, D.H.1
  • 14
  • 16
    • 33750295383 scopus 로고    scopus 로고
    • Ji, X., Xu, W., & Zhu, S. H. (2006). Document clustering with prior knowledge. In Proceedings of the ACM SIGIR international conference on information retrieval (pp. 405-412), Seattle, WA.
    • Ji, X., Xu, W., & Zhu, S. H. (2006). Document clustering with prior knowledge. In Proceedings of the ACM SIGIR international conference on information retrieval (pp. 405-412), Seattle, WA.
  • 17
    • 44449144669 scopus 로고    scopus 로고
    • Karypis, G. (2002). CLUTO - A clustering toolkit (Technical Report #02-017). Department of Computer Science, University of Minnesota.
    • Karypis, G. (2002). CLUTO - A clustering toolkit (Technical Report #02-017). Department of Computer Science, University of Minnesota.
  • 18
    • 44449085107 scopus 로고    scopus 로고
    • Klein, D., Kamvar, S. D., & Manning, C. D. (2002). From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering. In Proceedings of international conference on machine learning (pp. 307-314).
    • Klein, D., Kamvar, S. D., & Manning, C. D. (2002). From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering. In Proceedings of international conference on machine learning (pp. 307-314).
  • 19
    • 31844447616 scopus 로고    scopus 로고
    • Kulis, B., Basu, S., Dhillon, I., & Moony, R. (2005). Semi-supervised graph clustering: A kernel approach. In Proceedings of the international conference on machine learning (pp. 457-464).
    • Kulis, B., Basu, S., Dhillon, I., & Moony, R. (2005). Semi-supervised graph clustering: A kernel approach. In Proceedings of the international conference on machine learning (pp. 457-464).
  • 20
    • 84899013108 scopus 로고    scopus 로고
    • Ng, A. Y., Jordan, M. I., & Weiss, Y. (2002). On spectral clustering: Analysis and algorithm. Advances in Neural Information Processing System, 14.
    • Ng, A. Y., Jordan, M. I., & Weiss, Y. (2002). On spectral clustering: Analysis and algorithm. Advances in Neural Information Processing System, 14.
  • 24
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - A knowledge reuse framework for combining multiple partitions
    • Strehl A., and Ghosh J. Cluster ensembles - A knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research 3 (2002) 583-617
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 25
    • 44449138200 scopus 로고    scopus 로고
    • Wagstaff, K., & Cardie, C. (2000). Clustering with instance-level constraints. In Proceedings of the international conference on machine learning (pp. 1103-1110).
    • Wagstaff, K., & Cardie, C. (2000). Clustering with instance-level constraints. In Proceedings of the international conference on machine learning (pp. 1103-1110).
  • 26
    • 44449112911 scopus 로고    scopus 로고
    • Wagstaff, K., Rogers, S., & Schroedl, S. (2001). Constrained K-means clustering with background knowledge. In Proceedings of the international conference on machine learning (pp. 577-584).
    • Wagstaff, K., Rogers, S., & Schroedl, S. (2001). Constrained K-means clustering with background knowledge. In Proceedings of the international conference on machine learning (pp. 577-584).
  • 27
    • 44449083520 scopus 로고    scopus 로고
    • Wu, M., & Scholkopf, B. (2006). A local learning approach for clustering. Advances in Neural Information Processing System, 18.
    • Wu, M., & Scholkopf, B. (2006). A local learning approach for clustering. Advances in Neural Information Processing System, 18.
  • 28
    • 0027697605 scopus 로고
    • An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation
    • Wu Z., and Leahy R. An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 15 11 (1993) 1101-1113
    • (1993) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.15 , Issue.11 , pp. 1101-1113
    • Wu, Z.1    Leahy, R.2
  • 29
    • 44449127804 scopus 로고    scopus 로고
    • Xing, E.P., Ng, A.Y., Jordan, M.I., & Russell, S. (2002). Distance metric learning, with application to clustering with side-information. Advances in Neural Information Processing System, 14.
    • Xing, E.P., Ng, A.Y., Jordan, M.I., & Russell, S. (2002). Distance metric learning, with application to clustering with side-information. Advances in Neural Information Processing System, 14.
  • 30
    • 33750359743 scopus 로고    scopus 로고
    • Yan, B., & Domeniconi, C. (2006). An adaptive kernel method for semi-supervised clustering. In Proceedings of the 17th European conference on machine learning (pp. 521-532).
    • Yan, B., & Domeniconi, C. (2006). An adaptive kernel method for semi-supervised clustering. In Proceedings of the 17th European conference on machine learning (pp. 521-532).
  • 31
    • 0344551898 scopus 로고    scopus 로고
    • Yu, S.X., & Shi, J. (2003). Multiclass spectral clustering. In Proceedings of the international conference on computer vision (pp. 313-319).
    • Yu, S.X., & Shi, J. (2003). Multiclass spectral clustering. In Proceedings of the international conference on computer vision (pp. 313-319).
  • 32
    • 0035751898 scopus 로고    scopus 로고
    • Zha, H., Ding, C., & Gu, M. (2001). Bipartite graph partitioning and data clustering. In Proceedings of ACM international conference on information and knowledge management (pp. 25-31), Atlanta.
    • Zha, H., Ding, C., & Gu, M. (2001). Bipartite graph partitioning and data clustering. In Proceedings of ACM international conference on information and knowledge management (pp. 25-31), Atlanta.
  • 33
    • 44449118678 scopus 로고    scopus 로고
    • Zha, H., Ding, C., Gu, M., He, X., & Simon, H. (2002). Spectral relaxation for k-means clustering. Advances in Neural Information Processing System, 14.
    • Zha, H., Ding, C., Gu, M., He, X., & Simon, H. (2002). Spectral relaxation for k-means clustering. Advances in Neural Information Processing System, 14.
  • 34
    • 44449092259 scopus 로고    scopus 로고
    • Zhao, Y., & Karypis, G. (2001). Criterion function for document clustering: Experiments and analysis (Technical Report #01-40). Department of Computer Science, University of Minnesota.
    • Zhao, Y., & Karypis, G. (2001). Criterion function for document clustering: Experiments and analysis (Technical Report #01-40). Department of Computer Science, University of Minnesota.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.