메뉴 건너뛰기




Volumn , Issue , 2008, Pages 576-583

Pairwise constraint propagation by semidefinite programming for semi-supervised classification

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); MACHINE LEARNING; MAPPING; LEARNING SYSTEMS; PROGRAMMING THEORY; ROBOT LEARNING;

EID: 56449130871     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1390156.1390229     Document Type: Conference Paper
Times cited : (126)

References (30)
  • 1
    • 1942517347 scopus 로고    scopus 로고
    • Learning distance functions using equivalence relations
    • Bar-Hillel, A., Hertz, T., Shental, N., & Weinshall, D. (2003). Learning distance functions using equivalence relations. ICML (pp. 11-18).
    • (2003) ICML , pp. 11-18
    • Bar-Hillel, A.1    Hertz, T.2    Shental, N.3    Weinshall, D.4
  • 2
    • 12244300524 scopus 로고    scopus 로고
    • A probabilistic framework for semi-supervised clustering
    • Basu, S., Bilenko, M., & Mooney, R. (2004). A probabilistic framework for semi-supervised clustering. SIGKDD (pp. 59-68).
    • (2004) SIGKDD , pp. 59-68
    • Basu, S.1    Bilenko, M.2    Mooney, R.3
  • 3
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • Belkin, M., Niyogi, P., & Sindhwani, V. (2006). Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7, 2399-2434.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 4
    • 14344264451 scopus 로고    scopus 로고
    • Integrating constraints and metric learning in semi-supervised clustering
    • Bilenko, M., Basu, S., & Mooney, R. (2004). Integrating constraints and metric learning in semi-supervised clustering. ICML.
    • (2004) ICML
    • Bilenko, M.1    Basu, S.2    Mooney, R.3
  • 5
    • 0033295981 scopus 로고    scopus 로고
    • CSDP, a C library for semidefinite programming
    • Borchers, B. (1999). CSDP, a C library for semidefinite programming. Optimization Methods & Software, 11-2, 613-623.
    • (1999) Optimization Methods & Software , vol.11 -2 , pp. 613-623
    • Borchers, B.1
  • 8
    • 51949086172 scopus 로고    scopus 로고
    • Semi-supervised classification by low density separation
    • Chapelle, O., & Zien, A. (2005). Semi-supervised classification by low density separation. AISTATS.
    • (2005) AISTATS
    • Chapelle, O.1    Zien, A.2
  • 11
    • 36348998315 scopus 로고    scopus 로고
    • Dissimilarity in graph-based semisupervised classification
    • Goldberg, A., Zhu, X., & Wright, S. (2007). Dissimilarity in graph-based semisupervised classification. AISTATS.
    • (2007) AISTATS
    • Goldberg, A.1    Zhu, X.2    Wright, S.3
  • 12
    • 34547975734 scopus 로고    scopus 로고
    • Learning nonparametric kernel matrices from pairwise constraints
    • Hoi, S., Jin, R., & Lyu, M. (2007). Learning nonparametric kernel matrices from pairwise constraints. ICML (pp. 361-368).
    • (2007) ICML , pp. 361-368
    • Hoi, S.1    Jin, R.2    Lyu, M.3
  • 14
    • 9444294778 scopus 로고    scopus 로고
    • From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering
    • Klein, D., Kamvar, S., & Manning, C. (2002). From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering. ICML (pp. 307-314).
    • (2002) ICML , pp. 307-314
    • Klein, D.1    Kamvar, S.2    Manning, C.3
  • 15
    • 31844447616 scopus 로고    scopus 로고
    • Semi-supervised graph clustering: A kernel approach
    • Kulis, B., Basu, S., Dhillon, I., & Mooney, R. (2005). Semi-supervised graph clustering: A kernel approach. ICML (pp. 457-464).
    • (2005) ICML , pp. 457-464
    • Kulis, B.1    Basu, S.2    Dhillon, I.3    Mooney, R.4
  • 16
    • 50649124911 scopus 로고    scopus 로고
    • Noise robust spectral clustering
    • Li, Z., Liu, J., Chen, S., & Tang, X. (2007). Noise robust spectral clustering. ICCV.
    • (2007) ICCV
    • Li, Z.1    Liu, J.2    Chen, S.3    Tang, X.4
  • 19
    • 14344259597 scopus 로고    scopus 로고
    • Kernels and regularization on graphs
    • Smola, A., & Kondor, R. (2003). Kernels and regularization on graphs. COLT.
    • (2003) COLT
    • Smola, A.1    Kondor, R.2
  • 20
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - a knowledge reuse framework for combining multiple partitions
    • Strehl, A., & Ghosh, J. (2003). Cluster ensembles - a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research, 3, 583-617.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 21
    • 0033296299 scopus 로고    scopus 로고
    • Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones
    • Sturm, J. F. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods & Software, 11-2, 625-653.
    • (1999) Optimization Methods & Software , vol.11 -2 , pp. 625-653
    • Sturm, J.F.1
  • 23
    • 56449111029 scopus 로고    scopus 로고
    • Semi-supervised learning by mixed label propagation
    • Tong, W., & Jin, R. (2007). Semi-supervised learning by mixed label propagation. AAAI.
    • (2007) AAAI
    • Tong, W.1    Jin, R.2
  • 24
    • 0001898293 scopus 로고    scopus 로고
    • Clustering with instance-level constraints
    • Wagstaff, K., & Cardie, C. (2000). Clustering with instance-level constraints. ICML (pp. 1103-1110).
    • (2000) ICML , pp. 1103-1110
    • Wagstaff, K.1    Cardie, C.2
  • 25
    • 0042377235 scopus 로고    scopus 로고
    • Constrained k-nieans clustering with background knowledge
    • Wagstaff, K., Cardie, C., Rogers, S., & Schroedl, S. (2001). Constrained k-nieans clustering with background knowledge. ICML (pp. 577-584).
    • (2001) ICML , pp. 577-584
    • Wagstaff, K.1    Cardie, C.2    Rogers, S.3    Schroedl, S.4
  • 27
  • 29
    • 33745456231 scopus 로고    scopus 로고
    • Semi-supervised learning literature survey
    • 1530, Computer Sciences, University of Wisconsin-Madison
    • Zhu, X. (2005). Semi-supervised learning literature survey (Technical Report 1530). Computer Sciences, University of Wisconsin-Madison.
    • (2005) Technical Report
    • Zhu, X.1
  • 30
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using gaussian fields and harmonic functions
    • Zhu, X., Ghahramani, Z., & Lafferty, J. Semi-supervised learning using gaussian fields and harmonic functions. ICML (pp. 912-919).
    • ICML , pp. 912-919
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.