-
2
-
-
1042277537
-
Learning from user behavior in image retrieval: application of market basket analysis
-
Muller H., Pun T., and Squire D. Learning from user behavior in image retrieval: application of market basket analysis. Int. J. Comput. Vision 56 1-2 (2004) 65-77
-
(2004)
Int. J. Comput. Vision
, vol.56
, Issue.1-2
, pp. 65-77
-
-
Muller, H.1
Pun, T.2
Squire, D.3
-
3
-
-
0037287655
-
Learning a semantic space from users relevance feedback for image retrieval
-
He X., King O., Ma W.Y., Li M., and Zhang H.J. Learning a semantic space from users relevance feedback for image retrieval. IEEE Trans. Circuits Systems Video Technol. 13 1 (2003) 39-48
-
(2003)
IEEE Trans. Circuits Systems Video Technol.
, vol.13
, Issue.1
, pp. 39-48
-
-
He, X.1
King, O.2
Ma, W.Y.3
Li, M.4
Zhang, H.J.5
-
5
-
-
84898941962
-
-
C. Domeniconi, D. Gunopulos, Adaptive nearest neighbor classification using support vector machines, in: Advances in Neural Information Processing Systems, vol. 14, 2002.
-
C. Domeniconi, D. Gunopulos, Adaptive nearest neighbor classification using support vector machines, in: Advances in Neural Information Processing Systems, vol. 14, 2002.
-
-
-
-
7
-
-
2342504481
-
Negative pseudo-relevance feedback in content-based video retrieval
-
Berkeley, CA, USA
-
Yan R., Hauptmann A., and Jin R. Negative pseudo-relevance feedback in content-based video retrieval. Proceedings of ACM on Multimedia. Berkeley, CA, USA (2003) 343-346
-
(2003)
Proceedings of ACM on Multimedia
, pp. 343-346
-
-
Yan, R.1
Hauptmann, A.2
Jin, R.3
-
9
-
-
13444263430
-
Manifold ranking based image retrieval
-
New York, USA
-
He J.R., Li M.J., Zhang H.J., Tong H.H., and Zhang C.S. Manifold ranking based image retrieval. Proceedings of ACM on Multimedia. New York, USA (2004) 9-16
-
(2004)
Proceedings of ACM on Multimedia
, pp. 9-16
-
-
He, J.R.1
Li, M.J.2
Zhang, H.J.3
Tong, H.H.4
Zhang, C.S.5
-
10
-
-
34548560762
-
Learning semantics-preserving distance metrics for clustering graphical data
-
Chicago, IL, USA
-
Varde A.S., Rundensteiner E.A., Ruiz C., Maniruzzaman M., and Jr. R. Learning semantics-preserving distance metrics for clustering graphical data. SIGKDD Workshop on Multimedia Data Mining: Mining Integrated Media and Complex Data. Chicago, IL, USA (2005) 107-112
-
(2005)
SIGKDD Workshop on Multimedia Data Mining: Mining Integrated Media and Complex Data
, pp. 107-112
-
-
Varde, A.S.1
Rundensteiner, E.A.2
Ruiz, C.3
Maniruzzaman, M.4
Jr., R.5
-
11
-
-
84883098050
-
Formulating context-dependent similarity functions
-
Chicago, IL, USA
-
Wu G., Chang E.Y., and Panda N. Formulating context-dependent similarity functions. Proceedings of ACM on Multimedia. Chicago, IL, USA (2005) 725-734
-
(2005)
Proceedings of ACM on Multimedia
, pp. 725-734
-
-
Wu, G.1
Chang, E.Y.2
Panda, N.3
-
13
-
-
34547980697
-
A transductive framework of distance metric learning by spectral dimensionality reduction
-
Corvallis, Oregon, USA
-
Li F., Yang J., and Wang J. A transductive framework of distance metric learning by spectral dimensionality reduction. Proceedings of International Conference on Machine Learning. Corvallis, Oregon, USA (2007) 513-520
-
(2007)
Proceedings of International Conference on Machine Learning
, pp. 513-520
-
-
Li, F.1
Yang, J.2
Wang, J.3
-
14
-
-
49449098285
-
-
L. Yang, R. Jin, Distance metric learning: a comprehensive survey, Technical Report, Michigan State University 〈http://www.cse.msu.edu/∼yangliu1/frame_survey_v2.pdf〉, 2006.
-
L. Yang, R. Jin, Distance metric learning: a comprehensive survey, Technical Report, Michigan State University 〈http://www.cse.msu.edu/∼yangliu1/frame_survey_v2.pdf〉, 2006.
-
-
-
-
15
-
-
33745887620
-
Neighbourhood components analysis
-
MIT Press, Cambridge, MA, USA
-
Goldberger J., Roweis S., Hinton G., and Salakhutdinov R. Neighbourhood components analysis. Advances in NIPS (2004), MIT Press, Cambridge, MA, USA 513-520
-
(2004)
Advances in NIPS
, pp. 513-520
-
-
Goldberger, J.1
Roweis, S.2
Hinton, G.3
Salakhutdinov, R.4
-
16
-
-
33749257955
-
Distance metric learning for large margin nearest neighbor classification
-
MIT Press, Cambridge, MA, USA
-
Weinberger K., Blitzer J., and Saul L. Distance metric learning for large margin nearest neighbor classification. Advances in NIPS (2006), MIT Press, Cambridge, MA, USA 1473-1480
-
(2006)
Advances in NIPS
, pp. 1473-1480
-
-
Weinberger, K.1
Blitzer, J.2
Saul, L.3
-
17
-
-
84864062501
-
Large margin component analysis
-
MIT Press, Cambridge, MA, USA
-
Torresani L., and Lee K.C. Large margin component analysis. Advances in NIPS (2007), MIT Press, Cambridge, MA, USA 505-512
-
(2007)
Advances in NIPS
, pp. 505-512
-
-
Torresani, L.1
Lee, K.C.2
-
18
-
-
84864030708
-
Metric learning by collapsing classes
-
MIT Press, Cambridge, MA, USA
-
Globerson A., and Roweis S. Metric learning by collapsing classes. Advances in NIPS (2006), MIT Press, Cambridge, MA, USA 451-458
-
(2006)
Advances in NIPS
, pp. 451-458
-
-
Globerson, A.1
Roweis, S.2
-
19
-
-
84880784532
-
Parametric distance metric learning with label information
-
Acapulco, Mexico
-
Zhang Z.H., Kwok J.T., and Yeung D.Y. Parametric distance metric learning with label information. IJCAI (2003), Acapulco, Mexico 1450-1452
-
(2003)
IJCAI
, pp. 1450-1452
-
-
Zhang, Z.H.1
Kwok, J.T.2
Yeung, D.Y.3
-
20
-
-
49449093435
-
-
G. Lebanon, Flexible metric nearest neighbor classification, Technical Report, Statistics Department, Stanford University, 1994.
-
G. Lebanon, Flexible metric nearest neighbor classification, Technical Report, Statistics Department, Stanford University, 1994.
-
-
-
-
21
-
-
33845594193
-
-
C.H. Hoi, W. Liu, M.R. Lyu, W.Y. Ma, Learning distance metrics with contextual constraints for image retrieval, in: Proceedings of Conference on Computer Vision and Pattern Recognition, vol. 2, New York, USA, 2006, pp. 2072-2078.
-
C.H. Hoi, W. Liu, M.R. Lyu, W.Y. Ma, Learning distance metrics with contextual constraints for image retrieval, in: Proceedings of Conference on Computer Vision and Pattern Recognition, vol. 2, New York, USA, 2006, pp. 2072-2078.
-
-
-
-
22
-
-
84879571292
-
Distance metric learning, with application to clustering with side-information
-
MIT Press, Cambridge, MA, USA
-
Xing E.P., Ng A.Y., Jordan M.I., and Russell S. Distance metric learning, with application to clustering with side-information. Advances in NIPS (2003), MIT Press, Cambridge, MA, USA 505-512
-
(2003)
Advances in NIPS
, pp. 505-512
-
-
Xing, E.P.1
Ng, A.Y.2
Jordan, M.I.3
Russell, S.4
-
25
-
-
33749562338
-
Learning sparse metrics via linear programming
-
New York, USA
-
Rosales R., and Fung G. Learning sparse metrics via linear programming. SIGKDD. New York, USA (2006) 367-373
-
(2006)
SIGKDD
, pp. 367-373
-
-
Rosales, R.1
Fung, G.2
-
26
-
-
84898997673
-
Learning a distance metric from relative comparisons
-
MIT Press, Cambridge, MA, USA
-
Schultz M., and Joachims T. Learning a distance metric from relative comparisons. Advances in NIPS (2004), MIT Press, Cambridge, MA, USA
-
(2004)
Advances in NIPS
-
-
Schultz, M.1
Joachims, T.2
-
27
-
-
49449116685
-
-
L. Yang, R. Jin, R. Sukthankar, Y. Liu, An efficient algorithm for local distance metric learning, in: AAAI, Boston, USA, 2006.
-
L. Yang, R. Jin, R. Sukthankar, Y. Liu, An efficient algorithm for local distance metric learning, in: AAAI, Boston, USA, 2006.
-
-
-
-
29
-
-
49449098930
-
-
W. Tang, S. Zhong, Pairwise constraints-guided dimensionality reduction, in: SDM Workshop on Feature Selection for Data Mining, 2006.
-
W. Tang, S. Zhong, Pairwise constraints-guided dimensionality reduction, in: SDM Workshop on Feature Selection for Data Mining, 2006.
-
-
-
-
31
-
-
49449112716
-
-
N. Shental, A. Bar-Hillel, T. Hertz, D. Weinshall, Computing Gaussian mixture models with em using side-information, in: ICML Workshop on The Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining, 2003.
-
N. Shental, A. Bar-Hillel, T. Hertz, D. Weinshall, Computing Gaussian mixture models with em using side-information, in: ICML Workshop on The Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining, 2003.
-
-
-
-
32
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
Lanckriet G.R.G., Cristianini N., Bartlett P., Ghaoui L.E., and Jordan M.I. Learning the kernel matrix with semidefinite programming. J. Mach. Learn. Res. 5 1 (2004) 27-72
-
(2004)
J. Mach. Learn. Res.
, vol.5
, Issue.1
, pp. 27-72
-
-
Lanckriet, G.R.G.1
Cristianini, N.2
Bartlett, P.3
Ghaoui, L.E.4
Jordan, M.I.5
-
33
-
-
84898984833
-
Semi-supervised learning with penalized probabilistic clustering
-
MIT Press, Cambridge, MA, USA
-
Lu Z., and Leen T. Semi-supervised learning with penalized probabilistic clustering. Advances in NIPS (2005), MIT Press, Cambridge, MA, USA 849-856
-
(2005)
Advances in NIPS
, pp. 849-856
-
-
Lu, Z.1
Leen, T.2
-
34
-
-
33244489358
-
Extending the relevant component analysis algorithm for metric learning using both positive and negative equivalence constraints
-
Yeung D.-Y., and Chang H. Extending the relevant component analysis algorithm for metric learning using both positive and negative equivalence constraints. Pattern Recognition 39 5 (2006) 1007-1010
-
(2006)
Pattern Recognition
, vol.39
, Issue.5
, pp. 1007-1010
-
-
Yeung, D.-Y.1
Chang, H.2
-
35
-
-
34547966080
-
On the value of pairwise constraints in classification and consistency
-
Corvallis, Oregon, USA
-
Zhang J., and Yan R. On the value of pairwise constraints in classification and consistency. Proceedings of International Conference on Machine Learning. Corvallis, Oregon, USA (2007) 1111-1118
-
(2007)
Proceedings of International Conference on Machine Learning
, pp. 1111-1118
-
-
Zhang, J.1
Yan, R.2
-
37
-
-
14344265725
-
Boosting margin based distance functions for clustering
-
Banff, Alberta, Canada
-
Hertz T., Bar-Hillel A., and Weinshall D. Boosting margin based distance functions for clustering. Proceedings of International Conference on Machine Learning. Banff, Alberta, Canada (2004) 393-400
-
(2004)
Proceedings of International Conference on Machine Learning
, pp. 393-400
-
-
Hertz, T.1
Bar-Hillel, A.2
Weinshall, D.3
-
38
-
-
14344264451
-
Integrating constraints and metric learning in semi-supervised clustering
-
Banff, Alberta, Canada
-
Bilenko M., Basu S., and Mooney R.J. Integrating constraints and metric learning in semi-supervised clustering. Proceedings of International Conference on Machine Learning. Banff, Alberta, Canada (2004) 81-88
-
(2004)
Proceedings of International Conference on Machine Learning
, pp. 81-88
-
-
Bilenko, M.1
Basu, S.2
Mooney, R.J.3
-
39
-
-
34547996209
-
Information-theoretic metric learning
-
Corvallis, Oregon, USA
-
Davis J.V., Kulis B., Jain P., Sra S., and Dhillon I.S. Information-theoretic metric learning. Proceedings of International Conference on Machine Learning. Corvallis, Oregon, USA (2007) 209-216
-
(2007)
Proceedings of International Conference on Machine Learning
, pp. 209-216
-
-
Davis, J.V.1
Kulis, B.2
Jain, P.3
Sra, S.4
Dhillon, I.S.5
-
41
-
-
34548562145
-
Semi-supervised clustering with metric learning using relative comparisons
-
New Orleans, Louisiana, USA
-
Kumar N., Kummamuru K., and Paranjpe D. Semi-supervised clustering with metric learning using relative comparisons. IEEE International Conference on Data Mining. New Orleans, Louisiana, USA (2005) 693-696
-
(2005)
IEEE International Conference on Data Mining
, pp. 693-696
-
-
Kumar, N.1
Kummamuru, K.2
Paranjpe, D.3
-
45
-
-
1942420345
-
Learning metrics via discriminant kernels and multidimensional scaling: toward expected Euclidean representation
-
Washington, DC, USA
-
Zhang Z. Learning metrics via discriminant kernels and multidimensional scaling: toward expected Euclidean representation. Proceedings of International Conference on Machine Learning. Washington, DC, USA (2003) 872-879
-
(2003)
Proceedings of International Conference on Machine Learning
, pp. 872-879
-
-
Zhang, Z.1
-
46
-
-
36849021609
-
Nonlinear adaptive distance metric learning for clustering
-
San Jose, USA
-
Chen J., Zhao Z., Ye J., and Liu H. Nonlinear adaptive distance metric learning for clustering. Conference on Knowledge Discovery and Data Mining. San Jose, USA (2007) 123-132
-
(2007)
Conference on Knowledge Discovery and Data Mining
, pp. 123-132
-
-
Chen, J.1
Zhao, Z.2
Ye, J.3
Liu, H.4
-
47
-
-
33746076528
-
Online and batch learning of pseudo-metrics
-
Banff, Alberta, Canada
-
Shalev-Shwartz S., Singer Y., and Ng A.Y. Online and batch learning of pseudo-metrics. Proceedings of International Conference on Machine Learning. Banff, Alberta, Canada (2004) 94-101
-
(2004)
Proceedings of International Conference on Machine Learning
, pp. 94-101
-
-
Shalev-Shwartz, S.1
Singer, Y.2
Ng, A.Y.3
-
49
-
-
84898020780
-
-
E.-J. Ong, R. Bowden, Learning distances for arbitrary visual features, in: Proceedings of British Machine Vision Conference, vol. 2, Edinburgh, England, 2006, pp. 749-758.
-
E.-J. Ong, R. Bowden, Learning distances for arbitrary visual features, in: Proceedings of British Machine Vision Conference, vol. 2, Edinburgh, England, 2006, pp. 749-758.
-
-
-
-
50
-
-
24644436425
-
Learning a similarity metric discriminatively, with application to face verification
-
San Diego, USA
-
Chopra S., Hadsell R., and LeCun Y. Learning a similarity metric discriminatively, with application to face verification. Proceedings of International Conference on Computer Vision and Pattern Recognition. San Diego, USA (2005) 539-546
-
(2005)
Proceedings of International Conference on Computer Vision and Pattern Recognition
, pp. 539-546
-
-
Chopra, S.1
Hadsell, R.2
LeCun, Y.3
-
51
-
-
34447321075
-
-
L. Yang, R. Jin, R. Sukthankar, B. Zheng, L. Mummert, M. Satyanarayanan, M. Chen, D. Jukic, Learning distance metrics for interactive search-assisted diagnosis of mammograms, in: SPIE Symposium on Medical Imaging: Computer-Aided Diagnosis, vol. 6514, 2007.
-
L. Yang, R. Jin, R. Sukthankar, B. Zheng, L. Mummert, M. Satyanarayanan, M. Chen, D. Jukic, Learning distance metrics for interactive search-assisted diagnosis of mammograms, in: SPIE Symposium on Medical Imaging: Computer-Aided Diagnosis, vol. 6514, 2007.
-
-
-
-
52
-
-
5044232548
-
A discriminative learning framework with pairwise constraints for video object classification
-
Washington, DC, USA
-
Yan R., Zhang J., Yang J., and Hauptmann A. A discriminative learning framework with pairwise constraints for video object classification. Proceedings of International Conference on Computer Vision and Pattern Recognition. Washington, DC, USA (2004) 284-291
-
(2004)
Proceedings of International Conference on Computer Vision and Pattern Recognition
, pp. 284-291
-
-
Yan, R.1
Zhang, J.2
Yang, J.3
Hauptmann, A.4
-
53
-
-
49449092000
-
A randomized algorithm for learning mahalanobis metrics: application to classification and regression of biological data
-
Taiwan, China
-
Langmead C.J. A randomized algorithm for learning mahalanobis metrics: application to classification and regression of biological data. Asia Pacific Bioinformatics Conference. Taiwan, China (2006) 217-226
-
(2006)
Asia Pacific Bioinformatics Conference
, pp. 217-226
-
-
Langmead, C.J.1
-
54
-
-
0036298223
-
On learning perceptual distance function for image retrieval
-
Orlando, Florida, USA
-
Chang E., and Li B. On learning perceptual distance function for image retrieval. Asia Pacific Bioinformatics Conference. Orlando, Florida, USA (2002) 4092-4095
-
(2002)
Asia Pacific Bioinformatics Conference
, pp. 4092-4095
-
-
Chang, E.1
Li, B.2
-
56
-
-
0034300875
-
A new lda based face recognition system which can solve the small sample size problem
-
Chen L., Liao H., Ko M., Lin J., and Yu G. A new lda based face recognition system which can solve the small sample size problem. Pattern Recognition 33 10 (2000) 1713-1726
-
(2000)
Pattern Recognition
, vol.33
, Issue.10
, pp. 1713-1726
-
-
Chen, L.1
Liao, H.2
Ko, M.3
Lin, J.4
Yu, G.5
-
57
-
-
0001765951
-
A direct lda algorithm for high-dimensional data-with application to face recognition
-
Yu H., and Yang J. A direct lda algorithm for high-dimensional data-with application to face recognition. Pattern Recognition 34 10 (2001) 2067-2070
-
(2001)
Pattern Recognition
, vol.34
, Issue.10
, pp. 2067-2070
-
-
Yu, H.1
Yang, J.2
-
58
-
-
0003922190
-
-
Wiley, New York, USA
-
Duda R.O., Hart P.E., and Stork D.G. Pattern Classification. second ed. (2000), Wiley, New York, USA
-
(2000)
Pattern Classification. second ed.
-
-
Duda, R.O.1
Hart, P.E.2
Stork, D.G.3
-
59
-
-
0004236492
-
-
The Johns Hopkins University Press, Baltimore, MD, USA
-
Golub G.H., and van Loan C.F. Matrix Computations. third ed. (1996), The Johns Hopkins University Press, Baltimore, MD, USA
-
(1996)
Matrix Computations. third ed.
-
-
Golub, G.H.1
van Loan, C.F.2
-
60
-
-
0346034995
-
A generalized Foley-Sammon transform based on generalized fisher discriminant criterion and its application to face recognition
-
Guo Y.F., Li S.J., Yang J.Y., Shu T.T., and Wu L.D. A generalized Foley-Sammon transform based on generalized fisher discriminant criterion and its application to face recognition. Pattern Recognition Lett. 24 1 (2003) 147-158
-
(2003)
Pattern Recognition Lett.
, vol.24
, Issue.1
, pp. 147-158
-
-
Guo, Y.F.1
Li, S.J.2
Yang, J.Y.3
Shu, T.T.4
Wu, L.D.5
-
62
-
-
49449092373
-
-
S. Nene, S. Nayar, H. Murase, Columbia object image library (coil-20), Technical Report, Columbia University, 1996.
-
S. Nene, S. Nayar, H. Murase, Columbia object image library (coil-20), Technical Report, Columbia University, 1996.
-
-
-
-
63
-
-
0034844730
-
Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images
-
Vancouver, Canada
-
Boykov Y.Y., and Jolly M.P. Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. International Conference on Computer Vision. Vancouver, Canada (2001) 105-112
-
(2001)
International Conference on Computer Vision
, pp. 105-112
-
-
Boykov, Y.Y.1
Jolly, M.P.2
-
64
-
-
12844275859
-
Lazy snapping
-
Los Angeles, USA
-
Li Y., Sun J., Tang C.K., and Shum H.Y. Lazy snapping. SIGGRAPH. Los Angeles, USA (2004) 303-307
-
(2004)
SIGGRAPH
, pp. 303-307
-
-
Li, Y.1
Sun, J.2
Tang, C.K.3
Shum, H.Y.4
-
65
-
-
33745829806
-
-
S. Yan, X. Tang, Trace quotient problems revisited, in: European Conference on Computer Vision, vol. 2, Graz, Austria, 2006, pp. 232-244.
-
S. Yan, X. Tang, Trace quotient problems revisited, in: European Conference on Computer Vision, vol. 2, Graz, Austria, 2006, pp. 232-244.
-
-
-
|