메뉴 건너뛰기




Volumn 73, Issue 7-9, 2010, Pages 1352-1361

Kernel-based metric learning for semi-supervised clustering

Author keywords

Kernel learning; Metric learning; Non parametric kernel matrix; Optimization; Pairwise constraint; Semi supervised clustering

Indexed keywords

KERNEL LEARNING; KERNEL MATRICES; METRIC LEARNING; NON-PARAMETRIC; PAIRWISE CONSTRAINTS; SEMI-SUPERVISED CLUSTERING;

EID: 77949267074     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2009.12.009     Document Type: Article
Times cited : (49)

References (30)
  • 2
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin M., and Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15 6 (2003) 1373-1396
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 4
    • 33847024933 scopus 로고    scopus 로고
    • Kernel-based distance metric learning for content-based image retrieval
    • Chang H., and Yeung D.-Y. Kernel-based distance metric learning for content-based image retrieval. Image and Vision Computing 25 5 (2007) 695-703
    • (2007) Image and Vision Computing , vol.25 , Issue.5 , pp. 695-703
    • Chang, H.1    Yeung, D.-Y.2
  • 5
    • 33646084850 scopus 로고    scopus 로고
    • Locally linear metric adaptation with application to semi-supervised clustering and image retrieval
    • Chang H., and Yeung D.Y. Locally linear metric adaptation with application to semi-supervised clustering and image retrieval. Pattern Recognition 39 7 (2006) 1253-1264
    • (2006) Pattern Recognition , vol.39 , Issue.7 , pp. 1253-1264
    • Chang, H.1    Yeung, D.Y.2
  • 8
    • 0004067283 scopus 로고
    • Flexible metric nearest neighbor classification
    • Technical Report, Statistics Department, Stanford University
    • J.H. Friedman, Flexible metric nearest neighbor classification, Technical Report, Statistics Department, Stanford University, 1994.
    • (1994)
    • Friedman, J.H.1
  • 14
    • 40349116323 scopus 로고    scopus 로고
    • Semi-supervised clustering with metric learning using relative comparisons
    • Kumar N., and Kummamuru K. Semi-supervised clustering with metric learning using relative comparisons. IEEE Transactions on Knowledge and Data Engineering 20 4 (2007) 496-503
    • (2007) IEEE Transactions on Knowledge and Data Engineering , vol.20 , Issue.4 , pp. 496-503
    • Kumar, N.1    Kummamuru, K.2
  • 18
    • 0001920729 scopus 로고
    • Similarity metric learning for a variable-kernel classifier
    • Lowe D.G. Similarity metric learning for a variable-kernel classifier. Neural Computation 7 1 (1995) 72-85
    • (1995) Neural Computation , vol.7 , Issue.1 , pp. 72-85
    • Lowe, D.G.1
  • 19
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand W.M. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 66 (1971) 846-850
    • (1971) Journal of the American Statistical Association , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 20
    • 84898997673 scopus 로고    scopus 로고
    • Learning a distance metric from relative comparisons
    • MIT Press, Cambridge, MA, USA
    • M. Schultz, T. Joachims, Learning a distance metric from relative comparisons, in: Advances in NIPS 16, MIT Press, Cambridge, MA, USA, 2004, pp. 41-48.
    • (2004) Advances in NIPS , vol.16 , pp. 41-48
    • Schultz, M.1    Joachims, T.2
  • 21
    • 0019610270 scopus 로고
    • The optimal distance measure for nearest neighbor classification
    • Short R.D., and Fukunaga K. The optimal distance measure for nearest neighbor classification. IEEE Transactions on Information Theory 27 5 (1981) 622-627
    • (1981) IEEE Transactions on Information Theory , vol.27 , Issue.5 , pp. 622-627
    • Short, R.D.1    Fukunaga, K.2
  • 23
    • 77949274725 scopus 로고    scopus 로고
    • J.F. Strum and the Advanced Optimization Laboratory at McMaster University, Canada, SeDuMi version 1.1R3, 2006. Available at
    • J.F. Strum and the Advanced Optimization Laboratory at McMaster University, Canada, SeDuMi version 1.1R3, 2006. Available at: 〈http://sedumi.mcmaster.ca/〉.
  • 24
    • 21744434574 scopus 로고    scopus 로고
    • Learning similarity for semantic images classification
    • Wang D., Lim J.S., Han M.-M., and Lee B.-W. Learning similarity for semantic images classification. Neurocomputing 67 (2005) 363-368
    • (2005) Neurocomputing , vol.67 , pp. 363-368
    • Wang, D.1    Lim, J.S.2    Han, M.-M.3    Lee, B.-W.4
  • 25
    • 49449088902 scopus 로고    scopus 로고
    • Learning a Mahalanobis distance metric for data clustering and classification
    • Xiang S., Nie F., and Zhang C. Learning a Mahalanobis distance metric for data clustering and classification. Pattern Recognition 41 12 (2008) 3600-3612
    • (2008) Pattern Recognition , vol.41 , Issue.12 , pp. 3600-3612
    • Xiang, S.1    Nie, F.2    Zhang, C.3
  • 26
    • 84879571292 scopus 로고    scopus 로고
    • Distance metric learning with application to clustering with side information
    • MIT Press, Cambridge, MA, USA
    • E.P. Xing, A.Y. Ng, M.I. Jordan, S. Russell, Distance metric learning with application to clustering with side information, in: Advances in NIPS 15, MIT Press, Cambridge, MA, USA, 2003, pp. 505-512.
    • (2003) Advances in NIPS , vol.15 , pp. 505-512
    • Xing, E.P.1    Ng, A.Y.2    Jordan, M.I.3    Russell, S.4
  • 27
    • 35148876898 scopus 로고    scopus 로고
    • Distance metric learning: A comprehensive survey
    • Technical Report, Michigan State University
    • L. Yang, R. Jin, Distance metric learning: a comprehensive survey, Technical Report, Michigan State University, 2006.
    • (2006)
    • Yang, L.1    Jin, R.2
  • 28
    • 33244489358 scopus 로고    scopus 로고
    • Extending the relevant component analysis algorithm for metric learning using both positive and negative equivalence constraints
    • Yeung D.Y., and Chang H. Extending the relevant component analysis algorithm for metric learning using both positive and negative equivalence constraints. Pattern Recognition 39 5 (2006) 1007-1010
    • (2006) Pattern Recognition , vol.39 , Issue.5 , pp. 1007-1010
    • Yeung, D.Y.1    Chang, H.2
  • 29
    • 33846040203 scopus 로고    scopus 로고
    • A Kernel Approach for semi-supervised metric learning
    • Yeung D.Y., and Chang H. A Kernel Approach for semi-supervised metric learning. IEEE Transactions on Neural Networks 18 1 (2007) 141-149
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.1 , pp. 141-149
    • Yeung, D.Y.1    Chang, H.2
  • 30
    • 55749089518 scopus 로고    scopus 로고
    • A scalable kernel-based semi-supervised metric learning algorithm with out-of-sample generation ability
    • Yeung D.Y., Chang H., and Dai G. A scalable kernel-based semi-supervised metric learning algorithm with out-of-sample generation ability. Neural Computation 20 11 (2008) 2839-2861
    • (2008) Neural Computation , vol.20 , Issue.11 , pp. 2839-2861
    • Yeung, D.Y.1    Chang, H.2    Dai, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.