메뉴 건너뛰기




Volumn 31, Issue 7, 2009, Pages 1331-1337

Generalized risk zone: Selecting observations for classification

Author keywords

Classification; Neural networks; Observations selection; Risk zone; Support vector machine

Indexed keywords

CLASSIFICATION; CLASSIFICATION PERFORMANCE; INFORMATION THEORETIC LEARNING; LEARNING VECTOR QUANTIZATION; NEAREST NEIGHBORS; OBSERVATIONS SELECTION; PROBABILITY DENSITIES; RISK ZONE; RISK ZONES; SAMPLE SETS;

EID: 67349218801     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2008.269     Document Type: Article
Times cited : (13)

References (25)
  • 1
    • 33644818703 scopus 로고    scopus 로고
    • Learning Vector Quantization with Training Data Selection
    • Jan
    • C.E. Pedreira, "Learning Vector Quantization with Training Data Selection," IEEE Trans. Pattern Analysis and Machine Intelligence vol. 28, no. 1, pp. 157-162, Jan. 2006.
    • (2006) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.28 , Issue.1 , pp. 157-162
    • Pedreira, C.E.1
  • 4
    • 33750712867 scopus 로고    scopus 로고
    • An Information Theoretic Approach to Machine Learning,
    • Doctor scientiarum dissertation, Faculty of Science, Dept. of Physics, Univ. of Tromso
    • R. Jensen, "An Information Theoretic Approach to Machine Learning," Doctor scientiarum dissertation, Faculty of Science, Dept. of Physics, Univ. of Tromso, 2005.
    • (2005)
    • Jensen, R.1
  • 7
    • 27144489164 scopus 로고    scopus 로고
    • A Tutorial on Support Vector Machines for Pattern Recognition
    • C.J.C. Burges, "A Tutorial on Support Vector Machines for Pattern Recognition," Knowledge Discovery and Data Mining, vol. 2, no. 2, pp. 121-167, 1998.
    • (1998) Knowledge Discovery and Data Mining , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 8
    • 0027560678 scopus 로고
    • Selecting Concise Training Sets from Clean Data
    • Mar
    • M. Plutowski and H. White, "Selecting Concise Training Sets from Clean Data," IEEE Trans. Neural Networks, vol. 4, no. 2, pp. 305-318, Mar. 1993.
    • (1993) IEEE Trans. Neural Networks , vol.4 , Issue.2 , pp. 305-318
    • Plutowski, M.1    White, H.2
  • 9
    • 0025721732 scopus 로고
    • Query-Based Learning Applied to Partially Trained Multi-Layer Perceptrons
    • Jan
    • J.N. Hwang, J.J. Choi, S. Oh, and R.J. Marks II, "Query-Based Learning Applied to Partially Trained Multi-Layer Perceptrons," IEEE Trans. Neural Networks, vol. 2, no. 1, pp. 131-136, Jan. 1991.
    • (1991) IEEE Trans. Neural Networks , vol.2 , Issue.1 , pp. 131-136
    • Hwang, J.N.1    Choi, J.J.2    Oh, S.3    Marks II, R.J.4
  • 13
    • 1342282156 scopus 로고    scopus 로고
    • A Probabilistic Active Support Vector Learning Algorithm
    • Mar
    • P. Mitra and S.K. Pal, "A Probabilistic Active Support Vector Learning Algorithm," IEEE Trans. Pattern Analysis and Machine Intelligence vol. 26, no. 3, pp. 413-418, Mar. 2004.
    • (2004) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.26 , Issue.3 , pp. 413-418
    • Mitra, P.1    Pal, S.K.2
  • 15
    • 0003626613 scopus 로고    scopus 로고
    • Energy, Entropy and Information Potential for Neural Computation,
    • PhD thesis, Univ. of Florida
    • D. Xu, "Energy, Entropy and Information Potential for Neural Computation," PhD thesis, Univ. of Florida, 1999.
    • (1999)
    • Xu, D.1
  • 16
    • 6344221592 scopus 로고    scopus 로고
    • Rényi Continuous Entropy of DNA Sequences
    • S. Vinga and J. Almeida, "Rényi Continuous Entropy of DNA Sequences," J. Theorectical Biology, vol. 231, no. 3, pp. 377-388, 2004.
    • (2004) J. Theorectical Biology , vol.231 , Issue.3 , pp. 377-388
    • Vinga, S.1    Almeida, J.2
  • 17
    • 33747684076 scopus 로고    scopus 로고
    • A Hybrid SEM Algorithm for High-Dimensional Unsupervised Learning Using a Finite Generalized Dirichlet Mixture
    • N. Bouguila and D. Ziou, "A Hybrid SEM Algorithm for High-Dimensional Unsupervised Learning Using a Finite Generalized Dirichlet Mixture," IEEE Trans. Image Processing, vol. 15, no. 9, pp. 2657-2668, 2006.
    • (2006) IEEE Trans. Image Processing , vol.15 , Issue.9 , pp. 2657-2668
    • Bouguila, N.1    Ziou, D.2
  • 19
    • 21644436246 scopus 로고    scopus 로고
    • Localized Classification
    • G. Tutz and H. Binder, "Localized Classification," Statistics and Computing, vol. 15, pp. 155-166, 2005.
    • (2005) Statistics and Computing , vol.15 , pp. 155-166
    • Tutz, G.1    Binder, H.2
  • 21
    • 18244371055 scopus 로고    scopus 로고
    • Geometric Proximity Graphs for Improving Nearest Neighbor Methods in Instance-Based Learning and Data Mining
    • G.T. Toussaint, "Geometric Proximity Graphs for Improving Nearest Neighbor Methods in Instance-Based Learning and Data Mining", Int'l J. Computational Geometry and Applications, vol. 15, no. 2, pp. 101-150, 2005.
    • (2005) Int'l J. Computational Geometry and Applications , vol.15 , Issue.2 , pp. 101-150
    • Toussaint, G.T.1
  • 22
    • 0025725905 scopus 로고
    • Instance-Based Learning Algorithms
    • D.W. Aha, D. Kibler, and M. Albert, "Instance-Based Learning Algorithms," Machine Learning, vol. 6, pp. 37-66, 1991.
    • (1991) Machine Learning , vol.6 , pp. 37-66
    • Aha, D.W.1    Kibler, D.2    Albert, M.3
  • 23
    • 0343081513 scopus 로고    scopus 로고
    • Reduction Techniques for Instance-Based Learning Algorithms
    • D.R. Wilson and T.R. Martinez, "Reduction Techniques for Instance-Based Learning Algorithms," Machine Learning, vol. 38, pp. 257-286, 2000.
    • (2000) Machine Learning , vol.38 , pp. 257-286
    • Wilson, D.R.1    Martinez, T.R.2
  • 24
    • 0025792756 scopus 로고
    • Optimal Discriminant Plane for a Small Number of Samples and Design Method of Classifier on the Plane
    • Z.Q. Hong and J.Y. Yang, "Optimal Discriminant Plane for a Small Number of Samples and Design Method of Classifier on the Plane," Pattern Recognition, vol. 24, no. 4, pp. 317-324, 1991.
    • (1991) Pattern Recognition , vol.24 , Issue.4 , pp. 317-324
    • Hong, Z.Q.1    Yang, J.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.