메뉴 건너뛰기




Volumn 27, Issue 9, 2006, Pages 968-979

Selection of the optimal parameter value for the Isomap algorithm

Author keywords

Isomap; Manifold learning; Nonlinear dimensionality reduction

Indexed keywords

ALGORITHMS; DATA REDUCTION; LEARNING SYSTEMS; PARAMETER ESTIMATION;

EID: 33646162415     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2005.11.017     Document Type: Article
Times cited : (122)

References (22)
  • 1
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin M., and Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15 6 (2003) 1373-1396
    • (2003) Neural Comput. , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 2
    • 33646130488 scopus 로고    scopus 로고
    • Brand, M., 2004. From subspace to submanifold methods. Technical Report TR2004-134, MERL Research Lab.
  • 3
    • 0036807213 scopus 로고    scopus 로고
    • Estimating the intrinsic dimension of data with a fractal-based method
    • Camastra F., and Vinciarelli A. Estimating the intrinsic dimension of data with a fractal-based method. IEEE Trans. Pattern Anal. Mach. Intell. 24 10 (2002) 1404-1407
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.10 , pp. 1404-1407
    • Camastra, F.1    Vinciarelli, A.2
  • 4
    • 3543131272 scopus 로고    scopus 로고
    • Geodesic entropic graphs for dimension and entropy estimation in manifold learning
    • Costa J.A., and Hero A.O. Geodesic entropic graphs for dimension and entropy estimation in manifold learning. IEEE Trans. Signal Process. 25 8 (2004) 2210-2221
    • (2004) IEEE Trans. Signal Process. , vol.25 , Issue.8 , pp. 2210-2221
    • Costa, J.A.1    Hero, A.O.2
  • 5
    • 33646159837 scopus 로고    scopus 로고
    • de Ridder, D., Duin, R.P.W., 2002. Locally linear embedding for classification. Technical Report PH-2002-01, Pattern Recognition Group, Imaging Science and Technology Department, Faculty of Applied Science, Delft University of Technology.
  • 7
    • 0037948870 scopus 로고    scopus 로고
    • Donoho, D.L., Grimes, C.E., 2003. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. In: Proceedings of the National Academy of Arts and Sciences, vol. 100, pp. 5591-5596.
  • 8
    • 33646159625 scopus 로고    scopus 로고
    • Friedrich, T., 2002. Nonlinear dimensionality reduction with locally linear embedding and isomap. Master's thesis, Department of Computer Science, The University of Sheffield, September.
  • 10
    • 33646142175 scopus 로고    scopus 로고
    • Karaulova, J., Hall, P.M., Marshall, A.D., 2000. A hierarchical model for tracking people with a single video camera. In: Proc. British Machine Vision Conference (BMVC'2000), vol. 1, pp. 352-361.
  • 11
    • 0028272776 scopus 로고
    • Representation and separation of signals using nonlinear PCA type learning
    • Karhunen J., and Joutsensalo J. Representation and separation of signals using nonlinear PCA type learning. Neural Networks 7 (1994) 113-127
    • (1994) Neural Networks , vol.7 , pp. 113-127
    • Karhunen, J.1    Joutsensalo, J.2
  • 12
    • 33646164006 scopus 로고    scopus 로고
    • Kégl, B., 2002. Intrinsic dimension estimation using packing numbers. In: Neural Information Processing Systems, vol. 15.
  • 13
    • 33646147464 scopus 로고    scopus 로고
    • Kouropteva, O., Okun, O., Pietikäinen, M., 2002. Selection of the optimal parameter value for the locally linear embedding algorithm. In: Proc. of the 1st International Conference on Fuzzy Systems and Knowledge Discovery (FSKD'02), pp. 359-363.
  • 14
    • 33646156270 scopus 로고    scopus 로고
    • Kouropteva, O., Okun, O., Pietikainen, M., 2003. Classification of handwritten digits using supervised locally linear embedding algorithm and support vector machine. In: Proc. of the 11th European Symposium on Artificial Neural Networks (ESANN'2003), pp. 229-234.
  • 15
    • 33646161323 scopus 로고    scopus 로고
    • Navarro, D.J., Lee, M.D., 2001. Spatial visualisation of document similarity. In: Proceedings of the Defence Human Factors Special Interest Group Meeting, pp. 39-44.
  • 16
    • 33646133285 scopus 로고    scopus 로고
    • Roweis, S.T., Saul, L.K. Locally linear embedding homepage. Available from: .
  • 17
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S.T., and Saul L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 290 December (2000) 2323-2326
    • (2000) Science , vol.290 , Issue.December , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 18
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum J.B., de Silva V., and Langford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 290 December (2000) 2319-2323
    • (2000) Science , vol.290 , Issue.December , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 19
    • 0037016775 scopus 로고    scopus 로고
    • The isomap algorithm and topological stability-response
    • Tenenbaum J.B., de Silva V., and Langford J.C. The isomap algorithm and topological stability-response. Science 295 5552 (2002) 7
    • (2002) Science , vol.295 , Issue.5552 , pp. 7
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 20
    • 84950351930 scopus 로고
    • Multidimensional scaling: Theory and method
    • Torgerson W.S. Multidimensional scaling: Theory and method. Psychometrika 17 (1952) 401-419
    • (1952) Psychometrika , vol.17 , pp. 401-419
    • Torgerson, W.S.1
  • 21
    • 0036928021 scopus 로고    scopus 로고
    • Yang, M.H., 2002. Extended isomap for pattern classification. In: Proceedings of the 18th National Conference on Artificial Intelligence (AAAI 2002), pp. 224-229.
  • 22
    • 77955552386 scopus 로고    scopus 로고
    • Yang, M.H., 2003. Discriminant isometric mapping for face recognition. In: Computer Vision Systems, Third International Conference, ICVS 2003, vol. 2626, pp. 470-480.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.