-
1
-
-
0025340880
-
Studies on the mechanisms of autophagy: Maturation of the autophagic vacuole
-
Dunn WA, Jr. Studies on the mechanisms of autophagy: maturation of the autophagic vacuole. J Cell Biol 1990; 110(6): 1935-1945.
-
(1990)
J Cell Biol
, vol.110
, Issue.6
, pp. 1935-1945
-
-
Dunn Jr., W.A.1
-
2
-
-
10744225487
-
A unified nomenclature for yeast autophagy-related genes
-
Klionsky DJ, Cregg JM, Dunn WA Jr, et al. A unified nomenclature for yeast autophagy-related genes. Dev Cell 2003; 5(4): 539-545.
-
(2003)
Dev Cell
, vol.5
, Issue.4
, pp. 539-545
-
-
Klionsky, D.J.1
Cregg, J.M.2
Dunn Jr., W.A.3
-
3
-
-
0035503594
-
The preautophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation
-
Suzuki K, Kirisako T, Kamada Y, et al. The preautophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 2001; 20(21): 5971-5981.
-
(2001)
EMBO J
, vol.20
, Issue.21
, pp. 5971-5981
-
-
Suzuki, K.1
Kirisako, T.2
Kamada, Y.3
-
4
-
-
78149475088
-
Regulation of mammalian autophagy in physiology and pathophysiology
-
Ravikumar B, Sarkar S, Davies JE, et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 2010; 90(4): 1383-1435.
-
(2010)
Physiol Rev
, vol.90
, Issue.4
, pp. 1383-1435
-
-
Ravikumar, B.1
Sarkar, S.2
Davies, J.E.3
-
5
-
-
77954116814
-
Autophagy gone awry in neurodegenerative diseases
-
Wong E, Cuervo AM. Autophagy gone awry in neurodegenerative diseases. Nat Neurosci 2010; 13(7): 805-811.
-
(2010)
Nat Neurosci
, vol.13
, Issue.7
, pp. 805-811
-
-
Wong, E.1
Cuervo, A.M.2
-
6
-
-
77951911179
-
Regulation of autophagy in mammals and its interplay with apoptosis
-
Fimia GM, Piacentini M. Regulation of autophagy in mammals and its interplay with apoptosis. Cell Mol Life Sci 2010; 67(10): 1581-1588.
-
(2010)
Cell Mol Life Sci
, vol.67
, Issue.10
, pp. 1581-1588
-
-
Fimia, G.M.1
Piacentini, M.2
-
7
-
-
33244481532
-
Autophagy: A forty-year search for a missing membrane source
-
Juhasz G, Neufeld TP. Autophagy: a forty-year search for a missing membrane source. PLoS Biol 2006; 4(2): e36.
-
(2006)
PLoS Biol
, vol.4
, Issue.2
-
-
Juhasz, G.1
Neufeld, T.P.2
-
8
-
-
77956414236
-
The origin of the autophagosomal membrane
-
Tooze SA, Yoshimori T. The origin of the autophagosomal membrane. Nat Cell Biol 2010; 12(9): 831-835.
-
(2010)
Nat Cell Biol
, vol.12
, Issue.9
, pp. 831-835
-
-
Tooze, S.A.1
Yoshimori, T.2
-
9
-
-
0025363276
-
Studies on the mechanisms of autophagy: Formation of the autophagic vacuole
-
Dunn WA, Jr. Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J Cell Biol 1990; 110(6): 1923-1933.
-
(1990)
J Cell Biol
, vol.110
, Issue.6
, pp. 1923-1933
-
-
Dunn Jr., W.A.1
-
10
-
-
58149097286
-
Making autophagosomes: Localized synthesis of phosphatidylinositol 3-phosphate holds the clue
-
Walker S, Chandra P, Manifava M, et al. Making autophagosomes: localized synthesis of phosphatidylinositol 3-phosphate holds the clue. Autophagy. 2008; 4(8): 1093-1096.
-
(2008)
Autophagy
, vol.4
, Issue.8
, pp. 1093-1096
-
-
Walker, S.1
Chandra, P.2
Manifava, M.3
-
11
-
-
50249084987
-
Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
-
Axe EL, Walker SA, Manifava M, et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 2008; 182(4): 685-701.
-
(2008)
J Cell Biol
, vol.182
, Issue.4
, pp. 685-701
-
-
Axe, E.L.1
Walker, S.A.2
Manifava, M.3
-
12
-
-
0034676037
-
The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway
-
Kirisako T, Ichimura Y, Okada H, et al. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 2000; 151(2): 263-276.
-
(2000)
J Cell Biol
, vol.151
, Issue.2
, pp. 263-276
-
-
Kirisako, T.1
Ichimura, Y.2
Okada, H.3
-
13
-
-
58149290220
-
An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure
-
Fujita N, Hayashi-Nishino M, Fukumoto H, et al. An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol Biol Cell 2008; 19(11): 4651-4659.
-
(2008)
Mol Biol Cell
, vol.19
, Issue.11
, pp. 4651-4659
-
-
Fujita, N.1
Hayashi-Nishino, M.2
Fukumoto, H.3
-
14
-
-
71649087199
-
A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation
-
Hayashi-Nishino M, Fujita N, Noda T, et al. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 2009; 11(12): 1433-1437.
-
(2009)
Nat Cell Biol
, vol.11
, Issue.12
, pp. 1433-1437
-
-
Hayashi-Nishino, M.1
Fujita, N.2
Noda, T.3
-
15
-
-
77953507889
-
Electron tomography reveals the endoplasmic reticulum as a membrane source for autophagosome formation
-
Hayashi-Nishino M, Fujita N, Noda T, et al. Electron tomography reveals the endoplasmic reticulum as a membrane source for autophagosome formation. Autophagy 2010; 6(2): 301-303.
-
(2010)
Autophagy
, vol.6
, Issue.2
, pp. 301-303
-
-
Hayashi-Nishino, M.1
Fujita, N.2
Noda, T.3
-
16
-
-
71649112895
-
3D tomography reveals connections between the phagophore and endoplasmic reticulum
-
Yla-Anttila P, Vihinen H, Jokitalo E, et al. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 2009; 5(8): 1180-1185.
-
(2009)
Autophagy
, vol.5
, Issue.8
, pp. 1180-1185
-
-
Yla-Anttila, P.1
Vihinen, H.2
Jokitalo, E.3
-
17
-
-
77955895424
-
Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L
-
Matsunaga K, Morita E, Saitoh T, et al. Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. J Cell Biol 2010; 190(4): 511-521.
-
(2010)
J Cell Biol
, vol.190
, Issue.4
, pp. 511-521
-
-
Matsunaga, K.1
Morita, E.2
Saitoh, T.3
-
18
-
-
59249089394
-
Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG
-
Itakura E, Kishi C, Inoue K, et al. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 2008; 19(12): 5360-5372.
-
(2008)
Mol Biol Cell
, vol.19
, Issue.12
, pp. 5360-5372
-
-
Itakura, E.1
Kishi, C.2
Inoue, K.3
-
19
-
-
73949124443
-
Binding Rubicon to cross the Rubicon
-
Matsunaga K, Noda T, Yoshimori T. Binding Rubicon to cross the Rubicon. Autophagy 2009; 5(6): 876-877.
-
(2009)
Autophagy
, vol.5
, Issue.6
, pp. 876-877
-
-
Matsunaga, K.1
Noda, T.2
Yoshimori, T.3
-
20
-
-
58049192897
-
Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase
-
Sun Q, Fan W, Chen K, et al. Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase. Proc NatlAcad Sci USA 2008; 105(49): 19211-19216.
-
(2008)
Proc NatlAcad Sci USA
, vol.105
, Issue.49
, pp. 19211-19216
-
-
Sun, Q.1
Fan, W.2
Chen, K.3
-
21
-
-
64049113909
-
Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex
-
Zhong Y, Wang QJ, Li X, et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol 2009; 11(4): 468-476.
-
(2009)
Nat Cell Biol
, vol.11
, Issue.4
, pp. 468-476
-
-
Zhong, Y.1
Wang, Q.J.2
Li, X.3
-
22
-
-
53049102656
-
The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function
-
Obara K, Sekito T, Niimi K, et al. The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J Biol Chem 2008; 283(35): 23972-23980.
-
(2008)
J Biol Chem
, vol.283
, Issue.35
, pp. 23972-23980
-
-
Obara, K.1
Sekito, T.2
Niimi, K.3
-
23
-
-
34447276502
-
Human WIPI-1 puncta-formation: A novel assay to assess mammalian autophagy
-
Proikas-Cezanne T, Ruckerbauer S, Stierhof YD, et al. Human WIPI-1 puncta-formation: a novel assay to assess mammalian autophagy. FEBS Lett 2007; 581(18): 3396-3404.
-
(2007)
FEBS Lett
, vol.581
, Issue.18
, pp. 3396-3404
-
-
Proikas-Cezanne, T.1
Ruckerbauer, S.2
Stierhof, Y.D.3
-
24
-
-
77953726483
-
Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation
-
Epub ahead of print
-
Polson HE, de LJ, Rigden DJ, et al. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 2010; 6(4). [Epub ahead of print]
-
(2010)
Autophagy
, vol.6
, Issue.4
-
-
Polson, H.E.1
De, L.J.2
Rigden, D.J.3
-
25
-
-
77955884684
-
Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins
-
Itakura E, Mizushima N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 2010;6(6): 764-776.
-
(2010)
Autophagy
, vol.6
, Issue.6
, pp. 764-776
-
-
Itakura, E.1
Mizushima, N.2
-
26
-
-
37549012209
-
The pancreatitis-induced vacuole membrane protein 1 triggers autophagy in mammalian cells
-
Ropolo A, Grasso D, Pardo R, et al. The pancreatitis-induced vacuole membrane protein 1 triggers autophagy in mammalian cells. J Biol Chem 2007; 282(51): 37124-37133.
-
(2007)
J Biol Chem
, vol.282
, Issue.51
, pp. 37124-37133
-
-
Ropolo, A.1
Grasso, D.2
Pardo, R.3
-
27
-
-
75149186608
-
Autophagy dysfunction and ubiquitin-positive protein aggregates in Dictyostelium cells lacking Vmp1
-
Calvo-Garrido J, Escalante R. Autophagy dysfunction and ubiquitin-positive protein aggregates in Dictyostelium cells lacking Vmp1. Autophagy 2010; 6(1): 100-109.
-
(2010)
Autophagy
, vol.6
, Issue.1
, pp. 100-109
-
-
Calvo-Garrido, J.1
Escalante, R.2
-
28
-
-
0028233498
-
COPII: A membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum
-
Barlowe C, Orci L, Yeung T, et al. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 1994; 77(6): 895-907.
-
(1994)
Cell
, vol.77
, Issue.6
, pp. 895-907
-
-
Barlowe, C.1
Orci, L.2
Yeung, T.3
-
30
-
-
77955239270
-
Autophagosome formation depends on the small GTPase Rab1 and functional ER exit sites
-
Zoppino FC, Militello RD, Slavin I, et al. Autophagosome formation depends on the small GTPase Rab1 and functional ER exit sites. Traffic 2010; 11(9): 1246-1261.
-
(2010)
Traffic
, vol.11
, Issue.9
, pp. 1246-1261
-
-
Zoppino, F.C.1
Militello, R.D.2
Slavin, I.3
-
31
-
-
0024807217
-
A novel GTP-binding protein, Sar1p, is involved in transport from the endoplasmic reticulum to the Golgi apparatus
-
Pt
-
Nakano A, Muramatsu M. A novel GTP-binding protein, Sar1p, is involved in transport from the endoplasmic reticulum to the Golgi apparatus. J Cell Biol 1989; 109(6 Pt 1): 2677-2691.
-
(1989)
J Cell Biol
, vol.109
, Issue.1-6
, pp. 2677-2691
-
-
Nakano, A.1
Muramatsu, M.2
-
32
-
-
0026072726
-
Rab1b regulates vesicular trans port between the endoplasmic reticulum and successive Golgi compartments
-
Plutner H, Cox AD, Pind S, et al. Rab1b regulates vesicular trans port between the endoplasmic reticulum and successive Golgi compartments. J Cell Biol 1991; 115(1): 31-43.
-
(1991)
J Cell Biol
, vol.115
, Issue.1
, pp. 31-43
-
-
Plutner, H.1
Cox, A.D.2
Pind, S.3
-
33
-
-
0035192612
-
Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion
-
Ishihara N, Hamasaki M, Yokota S, et al. Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. Mol Biol Cell 2001; 12(11): 3690-3702.
-
(2001)
Mol Biol Cell
, vol.12
, Issue.11
, pp. 3690-3702
-
-
Ishihara, N.1
Hamasaki, M.2
Yokota, S.3
-
34
-
-
77958487311
-
TRAPP complexes in membrane traffic: Convergence through a common Rab
-
Barrowman J, Bhandari D, Reinisch K, et al. TRAPP complexes in membrane traffic: convergence through a common Rab. Nat Rev Mol Cell Biol 2010; 11(11): 759-763.
-
(2010)
Nat Rev Mol Cell Biol
, vol.11
, Issue.11
, pp. 759-763
-
-
Barrowman, J.1
Bhandari, D.2
Reinisch, K.3
-
35
-
-
33847211759
-
TRAPPI tethers COPII vesicles by binding the coat subunit Sec23
-
Cai H, Yu S, Menon S, et al. TRAPPI tethers COPII vesicles by binding the coat subunit Sec23. Nature 2007; 445(7130): 941-944.
-
(2007)
Nature
, vol.445
, Issue.7130
, pp. 941-944
-
-
Cai, H.1
Yu, S.2
Menon, S.3
-
36
-
-
25844489089
-
Trs85 (Gsg1), a component of the TRAPP complexes, is required for the organization of the preautophagosomal structure during selective autophagy via the Cvt pathway
-
Meiling-Wesse K, Epple UD, Krick R, et al. Trs85 (Gsg1), a component of the TRAPP complexes, is required for the organization of the preautophagosomal structure during selective autophagy via the Cvt pathway. J Biol Chem 2005; 280(39): 33669-33678.
-
(2005)
J Biol Chem
, vol.280
, Issue.39
, pp. 33669-33678
-
-
Meiling-Wesse, K.1
Epple, U.D.2
Krick, R.3
-
37
-
-
77952329475
-
Trs85 directs a Ypt1 GEF, TRAPPIII, to the phagophore to promote autophagy
-
Lynch-Day MA, Bhandari D, Menon S, et al. Trs85 directs a Ypt1 GEF, TRAPPIII, to the phagophore to promote autophagy. Proc Natl Acad Sci USA 2010; 107(17): 7811-7816.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, Issue.17
, pp. 7811-7816
-
-
Lynch-Day, M.A.1
Bhandari, D.2
Menon, S.3
-
38
-
-
68949214328
-
A small GTPase, human Rab32, is required for the formation of autophagic vacuoles under basal conditions
-
Hirota Y, Tanaka Y. A small GTPase, human Rab32, is required for the formation of autophagic vacuoles under basal conditions. Cell Mol Life Sci 2009; 66(17): 2913-2932.
-
(2009)
Cell Mol Life Sci
, vol.66
, Issue.17
, pp. 2913-2932
-
-
Hirota, Y.1
Tanaka, Y.2
-
39
-
-
77952495224
-
Mitochondria supply membranes for autophagosome biogenesis during starvation
-
Hailey DW, Rambold AS, Satpute-Krishnan P, et al. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 2010; 141(4): 656-667.
-
(2010)
Cell
, vol.141
, Issue.4
, pp. 656-667
-
-
Hailey, D.W.1
Rambold, A.S.2
Satpute-Krishnan, P.3
-
40
-
-
0035159675
-
Targeting of a tailanchored protein to endoplasmic reticulum and mitochondrial outer membrane by independent but competing pathways
-
Borgese N, Gazzoni I, Barberi M, et al. Targeting of a tailanchored protein to endoplasmic reticulum and mitochondrial outer membrane by independent but competing pathways. Mol Biol Cell 2001; 12(8): 2482-2496.
-
(2001)
Mol Biol Cell
, vol.12
, Issue.8
, pp. 2482-2496
-
-
Borgese, N.1
Gazzoni, I.2
Barberi, M.3
-
41
-
-
77954197767
-
Exit from the golgi is required for the expansion of the autophagosomal phagophore in yeast Saccharomyces cerevisiae
-
van d, V, Griffith J, Reggiori F. Exit from the golgi is required for the expansion of the autophagosomal phagophore in yeast Saccharomyces cerevisiae. Mol Biol Cell 2010; 21(13): 2270-2284.
-
(2010)
Mol Biol Cell
, vol.21
, Issue.13
, pp. 2270-2284
-
-
van d, V.1
Griffith, J.2
Reggiori, F.3
-
42
-
-
0041695457
-
Specific regulation of the adaptor protein complex AP-3 by the Arf GAP AGAP1
-
Nie Z, Boehm M, Boja ES, et al. Specific regulation of the adaptor protein complex AP-3 by the Arf GAP AGAP1. Dev Cell 2003; 5(3): 513-521.
-
(2003)
Dev Cell
, vol.5
, Issue.3
, pp. 513-521
-
-
Nie, Z.1
Boehm, M.2
Boja, E.S.3
-
43
-
-
77954184503
-
Post-golgi sec proteins are required for autophagy in Saccharomyces cerevisiae
-
Geng J, Nair U, Yasumura-Yorimitsu K, et al. Post-golgi sec proteins are required for autophagy in Saccharomyces cerevisiae. Mol Biol Cell 2010; 21(13): 2257-2269.
-
(2010)
Mol Biol Cell
, vol.21
, Issue.13
, pp. 2257-2269
-
-
Geng, J.1
Nair, U.2
Yasumura-Yorimitsu, K.3
-
44
-
-
33846028702
-
Sec2 is a highly efficient exchange factor for the Rab protein Sec4
-
Itzen A, Rak A, Goody RS. Sec2 is a highly efficient exchange factor for the Rab protein Sec4. J Mol Biol 2007; 365(5): 1359-1367.
-
(2007)
J Mol Biol
, vol.365
, Issue.5
, pp. 1359-1367
-
-
Itzen, A.1
Rak, A.2
Goody, R.S.3
-
45
-
-
0025336325
-
Sec2 protein contains a coiled-coil domain essential for vesicular transport and a dispensable carboxy terminal domain
-
Nair J, Muller H, Peterson M, et al. Sec2 protein contains a coiled-coil domain essential for vesicular transport and a dispensable carboxy terminal domain. J Cell Biol 1990; 110(6): 1897-1909.
-
(1990)
J Cell Biol
, vol.110
, Issue.6
, pp. 1897-1909
-
-
Nair, J.1
Muller, H.2
Peterson, M.3
-
46
-
-
34248581861
-
Atg9 trafficking in autophagy-related pathways
-
He C, Klionsky DJ. Atg9 trafficking in autophagy-related pathways. Autophagy 2007; 3(3): 271-274.
-
(2007)
Autophagy
, vol.3
, Issue.3
, pp. 271-274
-
-
He, C.1
Klionsky, D.J.2
-
47
-
-
77957198526
-
An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis
-
Mari M, Griffith J, Rieter E, et al. An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J Cell Biol 2010; 190(6): 1005-1022.
-
(2010)
J Cell Biol
, vol.190
, Issue.6
, pp. 1005-1022
-
-
Mari, M.1
Griffith, J.2
Rieter, E.3
-
48
-
-
33750366092
-
Starvation and ULK1- dependent cycling of mammalian Atg9 between the TGN and endosomes
-
Young AR, Chan EY, Hu XW, et al. Starvation and ULK1- dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci 2006; 119(Pt 18): 3888-3900.
-
(2006)
J Cell Sci
, vol.119
, Issue.Pt 18
, pp. 3888-3900
-
-
Young, A.R.1
Chan, E.Y.2
Hu, X.W.3
-
49
-
-
33846238592
-
Atg9 trafficking in Mammalian cells
-
Webber JL, Young AR, Tooze SA. Atg9 trafficking in Mammalian cells. Autophagy 2007; 3(1): 54-56.
-
(2007)
Autophagy
, vol.3
, Issue.1
, pp. 54-56
-
-
Webber, J.L.1
Young, A.R.2
Tooze, S.A.3
-
50
-
-
75749135725
-
The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy
-
Yen WL, Shintani T, Nair U, et al. The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy. J Cell Biol 2010; 188(1): 101-114.
-
(2010)
J Cell Biol
, vol.188
, Issue.1
, pp. 101-114
-
-
Yen, W.L.1
Shintani, T.2
Nair, U.3
-
51
-
-
70349687405
-
Discovery of Atg5/Atg7-independent alternative macroautophagy
-
Nishida Y, Arakawa S, Fujitani K, et al. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 2009; 461(7264): 654-658.
-
(2009)
Nature
, vol.461
, Issue.7264
, pp. 654-658
-
-
Nishida, Y.1
Arakawa, S.2
Fujitani, K.3
-
52
-
-
0037166241
-
Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast
-
Kuma A, Mizushima N, Ishihara N, et al. Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem 2002; 277(21): 18619-18625.
-
(2002)
J Biol Chem
, vol.277
, Issue.21
, pp. 18619-18625
-
-
Kuma, A.1
Mizushima, N.2
Ishihara, N.3
-
53
-
-
0033565655
-
Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway
-
Mizushima N, Noda T, Ohsumi Y. Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J 1999; 18(14): 3888-3896.
-
(1999)
EMBO J
, vol.18
, Issue.14
, pp. 3888-3896
-
-
Mizushima, N.1
Noda, T.2
Ohsumi, Y.3
-
54
-
-
38049098543
-
The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy
-
Hanada T, Noda NN, Satomi Y, et al. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 2007; 282(52): 37298-37302.
-
(2007)
J Biol Chem
, vol.282
, Issue.52
, pp. 37298-37302
-
-
Hanada, T.1
Noda, N.N.2
Satomi, Y.3
-
55
-
-
78649281871
-
Plasma membrane helps autophagosomes grow
-
Ravikumar B, Moreau K, Rubinsztein DC. Plasma membrane helps autophagosomes grow. Autophagy 2010; 6(8): 1184-1186.
-
(2010)
Autophagy
, vol.6
, Issue.8
, pp. 1184-1186
-
-
Ravikumar, B.1
Moreau, K.2
Rubinsztein, D.C.3
|