메뉴 건너뛰기




Volumn 31, Issue 8, 2011, Pages 1657-1671

Regulation of mTORC1 complex assembly and signaling by GRp58/ERp57

Author keywords

[No Author keywords available]

Indexed keywords

ENDOPLASMIC RETICULUM P57 PROTEIN; INITIATION FACTOR 4E BINDING PROTEIN 1; INSULIN; LEUCINE; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; MEMBRANE PROTEIN; PROTEIN DISULFIDE ISOMERASE; PROTEIN GRP58; PROTEIN RAPTOR; PROTEIN RICTOR; S6 KINASE; UNCLASSIFIED DRUG;

EID: 79953154067     PISSN: 02707306     EISSN: 10985549     Source Type: Journal    
DOI: 10.1128/MCB.00824-10     Document Type: Article
Times cited : (53)

References (55)
  • 1
    • 55549130231 scopus 로고    scopus 로고
    • Overlapping signal sequences control nuclear localization and endoplasmic reticulum retention of GRP58
    • Adikesavan, A. K., E. Unni, and A. K. Jaiswal. 2008. Overlapping signal sequences control nuclear localization and endoplasmic reticulum retention of GRP58. Biochem. Biophys. Res. Commun. 377:407-412.
    • (2008) Biochem. Biophys. Res. Commun. , vol.377 , pp. 407-412
    • Adikesavan, A.K.1    Unni, E.2    Jaiswal, A.K.3
  • 2
    • 33644879731 scopus 로고    scopus 로고
    • Mutational analysis of the oxidoreductase ERp57 reveals the importance of the two central residues in the redox motif
    • Beynon-Jones, S. M., A. N. Antoniou, and S. J. Powis. 2006. Mutational analysis of the oxidoreductase ERp57 reveals the importance of the two central residues in the redox motif. FEBS Lett. 580:1897-1902.
    • (2006) FEBS Lett , vol.580 , pp. 1897-1902
    • Beynon-Jones, S.M.1    Antoniou, A.N.2    Powis, S.J.3
  • 3
    • 0041320828 scopus 로고    scopus 로고
    • Novel regulatory mechanisms of mTOR signaling
    • Chen, J. 2004. Novel regulatory mechanisms of mTOR signaling. Curr. Top. Microbiol. Immunol. 279:245-257.
    • (2004) Curr. Top. Microbiol. Immunol. , vol.279 , pp. 245-257
    • Chen, J.1
  • 4
    • 75549087057 scopus 로고    scopus 로고
    • Role of ERp57 in the signaling and transcriptional activity of STAT3 in a melanoma cell line
    • Chichiarelli, S., et al. 2010. Role of ERp57 in the signaling and transcriptional activity of STAT3 in a melanoma cell line. Arch. Biochem. Biophys. 494:178-183.
    • (2010) Arch. Biochem. Biophys. , vol.494 , pp. 178-183
    • Chichiarelli, S.1
  • 5
    • 77949879489 scopus 로고    scopus 로고
    • ERp57 modulates STAT3 signaling from the lumen of the endoplasmic reticulum
    • Coe, H., J. Jung, J. Groenendyk, D. Prins, and M. Michalak. 2010. ERp57 modulates STAT3 signaling from the lumen of the endoplasmic reticulum. J. Biol. Chem. 285:6725-6738.
    • (2010) J. Biol. Chem. , vol.285 , pp. 6725-6738
    • Coe, H.1    Jung, J.2    Groenendyk, J.3    Prins, D.4    Michalak, M.5
  • 6
    • 77953809347 scopus 로고    scopus 로고
    • ERp57, a multifunctional endoplasmic reticulum resident oxidoreductase
    • Coe, H., and M. Michalak. 2010. ERp57, a multifunctional endoplasmic reticulum resident oxidoreductase. Int. J. Biochem. Cell Biol. 42:796-799.
    • (2010) Int. J. Biochem. Cell Biol. , vol.42 , pp. 796-799
    • Coe, H.1    Michalak, M.2
  • 7
    • 20144362478 scopus 로고    scopus 로고
    • The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability
    • Dames, S. A., J. M. Mulet, K. Rathgeb-Szabo, M. N. Hall, and S. Grzesiek. 2005. The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability. J. Biol. Chem. 280:20558-20564.
    • (2005) J. Biol. Chem. , vol.280 , pp. 20558-20564
    • Dames, S.A.1    Mulet, J.M.2    Rathgeb-Szabo, K.3    Hall, M.N.4    Grzesiek, S.5
  • 8
    • 33751162384 scopus 로고    scopus 로고
    • Therapeutic targets: MTOR and related pathways
    • Dancey, J. E. 2006. Therapeutic targets: MTOR and related pathways. Cancer Biol. Ther. 5:1065-1073.
    • (2006) Cancer Biol. Ther. , vol.5 , pp. 1065-1073
    • Dancey, J.E.1
  • 9
    • 0346422440 scopus 로고    scopus 로고
    • FKBP12-rapamycin-associated protein or mammalian target of rapamycin (FRAP/ mTOR) localization in the endoplasmic reticulum and the Golgi apparatus
    • Drenan, R. M., X. Liu, P. G. Bertram, and X. F. Zheng. 2004. FKBP12-rapamycin-associated protein or mammalian target of rapamycin (FRAP/ mTOR) localization in the endoplasmic reticulum and the Golgi apparatus. J. Biol. Chem. 279:772-778.
    • (2004) J. Biol. Chem. , vol.279 , pp. 772-778
    • Drenan, R.M.1    Liu, X.2    Bertram, P.G.3    Zheng, X.F.4
  • 10
    • 33750072949 scopus 로고    scopus 로고
    • mTOR and cancer therapy
    • Easton, J. B., and P. J. Houghton. 2006. mTOR and cancer therapy. Oncogene 25:6436-6446.
    • (2006) Oncogene , vol.25 , pp. 6436-6446
    • Easton, J.B.1    Houghton, P.J.2
  • 11
    • 47949125486 scopus 로고    scopus 로고
    • The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C
    • Facchinetti, V., et al. 2008. The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J. 27: 1932-1943.
    • (2008) EMBO J , vol.27 , pp. 1932-1943
    • Facchinetti, V.1
  • 12
    • 54949144410 scopus 로고    scopus 로고
    • mTOR inhibitors in the treatment of cancer
    • Fasolo, A., and C. Sessa. 2008. mTOR inhibitors in the treatment of cancer. Expert Opin. Investig. Drugs 17:1717-1734.
    • (2008) Expert Opin. Investig. Drugs , vol.17 , pp. 1717-1734
    • Fasolo, A.1    Sessa, C.2
  • 13
    • 2342545519 scopus 로고    scopus 로고
    • Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression
    • Fingar, D. C., and J. Blenis. 2004. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23:3151-3171.
    • (2004) Oncogene , vol.23 , pp. 3151-3171
    • Fingar, D.C.1    Blenis, J.2
  • 14
    • 0037097863 scopus 로고    scopus 로고
    • Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E
    • Fingar, D. C., S. Salama, C. Tsou, E. Harlow, and J. Blenis. 2002. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 16:1472-1487.
    • (2002) Genes Dev , vol.16 , pp. 1472-1487
    • Fingar, D.C.1    Salama, S.2    Tsou, C.3    Harlow, E.4    Blenis, J.5
  • 15
    • 33846044754 scopus 로고    scopus 로고
    • Interaction of ERp57 and tapasin in the generation of MHC class I-peptide complexes
    • Garbi, N., G. Hammerling, and S. Tanaka. 2007. Interaction of ERp57 and tapasin in the generation of MHC class I-peptide complexes. Curr. Opin. Immunol. 19:99-105.
    • (2007) Curr. Opin. Immunol. , vol.19 , pp. 99-105
    • Garbi, N.1    Hammerling, G.2    Tanaka, S.3
  • 16
    • 29244474572 scopus 로고    scopus 로고
    • Impaired assembly of the major histocompatibility complex class I peptide-loading complex in mice deficient in the oxidoreductase ERp57
    • Garbi, N., S. Tanaka, F. Momburg, and G. J. Hammerling. 2006. Impaired assembly of the major histocompatibility complex class I peptide-loading complex in mice deficient in the oxidoreductase ERp57. Nat. Immunol. 7:93-102.
    • (2006) Nat. Immunol. , vol.7 , pp. 93-102
    • Garbi, N.1    Tanaka, S.2    Momburg, F.3    Hammerling, G.J.4
  • 17
    • 33748329644 scopus 로고    scopus 로고
    • Cooperative activity of Ref-1/APE and ERp57 in reductive activation of transcription factors
    • Grillo, C., et al. 2006. Cooperative activity of Ref-1/APE and ERp57 in reductive activation of transcription factors. Free Radic. Biol. Med. 41:1113- 1123.
    • (2006) Free Radic. Biol. Med. , vol.41 , pp. 1113-1123
    • Grillo, C.1
  • 18
    • 33751348056 scopus 로고    scopus 로고
    • Ablation in mice of the mTORC components Raptor, Rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCα, but not S6K1
    • Guertin, D. A., et al. 2006. Ablation in mice of the mTORC components Raptor, Rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCα, but not S6K1. Dev. Cell 11:859-871.
    • (2006) Dev. Cell , vol.11 , pp. 859-871
    • Guertin, D.A.1
  • 19
    • 0036016555 scopus 로고    scopus 로고
    • Association of the chaperone glucose-regulated protein 58 (GRP58/ER-60/ERp57) with Stat3 in cytosol and plasma membrane complexes
    • Guo, G. G., et al. 2002. Association of the chaperone glucose-regulated protein 58 (GRP58/ER-60/ERp57) with Stat3 in cytosol and plasma membrane complexes. J. Interferon Cytokine Res. 22:555-563.
    • (2002) J. Interferon Cytokine Res. , vol.22 , pp. 555-563
    • Guo, G.G.1
  • 20
    • 75149142796 scopus 로고    scopus 로고
    • Differential requirement of CAAX-mediated posttranslational processing for Rheb localization and signaling
    • Hanker, A. B., et al. 2010. Differential requirement of CAAX-mediated posttranslational processing for Rheb localization and signaling. Oncogene 29:380-391.
    • (2010) Oncogene , vol.29 , pp. 380-391
    • Hanker, A.B.1
  • 21
    • 4043171462 scopus 로고    scopus 로고
    • Upstream and downstream of mTOR
    • Hay, N., and N. Sonenberg. 2004. Upstream and downstream of mTOR. Genes Dev. 18:1926-1945.
    • (2004) Genes Dev , vol.18 , pp. 1926-1945
    • Hay, N.1    Sonenberg, N.2
  • 22
    • 34548151890 scopus 로고    scopus 로고
    • P-Rex1 links mammalian target of rapamycin signaling to Rac activation and cell migration
    • Hernandez-Negrete, I., et al. 2007. P-Rex1 links mammalian target of rapamycin signaling to Rac activation and cell migration. J. Biol. Chem. 282: 23708-23715.
    • (2007) J. Biol. Chem. , vol.282 , pp. 23708-23715
    • Hernandez-Negrete, I.1
  • 23
    • 47949104258 scopus 로고    scopus 로고
    • Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling
    • Ikenoue, T., K. Inoki, Q. Yang, X. Zhou, and K. L. Guan. 2008. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J. 27:1919-1931.
    • (2008) EMBO J , vol.27 , pp. 1919-1931
    • Ikenoue, T.1    Inoki, K.2    Yang, Q.3    Zhou, X.4    Guan, K.L.5
  • 24
    • 52049091512 scopus 로고    scopus 로고
    • What controls TOR?
    • Jacinto, E. 2008. What controls TOR? IUBMB Life 60:483-496.
    • (2008) IUBMB Life , vol.60 , pp. 483-496
    • Jacinto, E.1
  • 25
    • 33749076673 scopus 로고    scopus 로고
    • SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity
    • Jacinto, E., et al. 2006. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127:125- 137.
    • (2006) Cell , vol.127 , pp. 125-137
    • Jacinto, E.1
  • 26
    • 52949126962 scopus 로고    scopus 로고
    • Constitutively active Rheb induces oncogenic transformation
    • Jiang, H., and P. K. Vogt. 2008. Constitutively active Rheb induces oncogenic transformation. Oncogene 27:5729-5740.
    • (2008) Oncogene , vol.27 , pp. 5729-5740
    • Jiang, H.1    Vogt, P.K.2
  • 27
    • 77953800576 scopus 로고    scopus 로고
    • Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly
    • Kaizuka, T., et al. 2010. Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly. J. Biol. Chem. 285:20109-20116.
    • (2010) J. Biol. Chem. , vol.285 , pp. 20109-20116
    • Kaizuka, T.1
  • 28
    • 34247555889 scopus 로고    scopus 로고
    • The ERp57/GRp58/1,25D3-MARRS receptor: multiple functional roles in diverse cell systems
    • Khanal, R. C., and I. Nemere. 2007. The ERp57/GRp58/1,25D3-MARRS receptor: multiple functional roles in diverse cell systems. Curr. Med. Chem. 14:1087-1093.
    • (2007) Curr. Med. Chem. , vol.14 , pp. 1087-1093
    • Khanal, R.C.1    Nemere, I.2
  • 29
    • 0041821468 scopus 로고    scopus 로고
    • Raptor and mTOR: subunits of a nutrient-sensitive complex
    • Kim, D. H., and D. M. Sabatini. 2004. Raptor and mTOR: subunits of a nutrient-sensitive complex. Curr. Top. Microbiol. Immunol. 279:259-270.
    • (2004) Curr. Top. Microbiol. Immunol. , vol.279 , pp. 259-270
    • Kim, D.H.1    Sabatini, D.M.2
  • 30
    • 0037178786 scopus 로고    scopus 로고
    • mTOR interacts with raptor to form a nutrientsensitive complex that signals to the cell growth machinery
    • Kim, D. H., et al. 2002. mTOR interacts with raptor to form a nutrientsensitive complex that signals to the cell growth machinery. Cell 110:163- 175.
    • (2002) Cell , vol.110 , pp. 163-175
    • Kim, D.H.1
  • 31
    • 29344442591 scopus 로고    scopus 로고
    • Evidence for phosphorylation of rat liver glucoseregulated protein 58, GRP58/ERp57/ER-60, induced by fasting and leptin
    • Kita, K., et al. 2006. Evidence for phosphorylation of rat liver glucoseregulated protein 58, GRP58/ERp57/ER-60, induced by fasting and leptin. FEBS Lett. 580:199-205.
    • (2006) FEBS Lett , vol.580 , pp. 199-205
    • Kita, K.1
  • 32
    • 33846080045 scopus 로고    scopus 로고
    • Hypoxia-induced endothelial proliferation requires both mTORC1 and mTORC2
    • Li, W., et al. 2007. Hypoxia-induced endothelial proliferation requires both mTORC1 and mTORC2. Circ. Res. 100:79-87.
    • (2007) Circ. Res. , vol.100 , pp. 79-87
    • Li, W.1
  • 33
    • 33947145667 scopus 로고    scopus 로고
    • Endoplasmic reticulum and Golgi localization sequences for mammalian target of rapamycin
    • Liu, X., and X. F. Zheng. 2007. Endoplasmic reticulum and Golgi localization sequences for mammalian target of rapamycin. Mol. Biol. Cell 18:1073- 1082.
    • (2007) Mol. Biol. Cell , vol.18 , pp. 1073-1082
    • Liu, X.1    Zheng, X.F.2
  • 34
    • 0033534719 scopus 로고    scopus 로고
    • Two isoforms of protein disulfide isomerase alter the dimerization status of E2A proteins by a redox mechanism
    • Markus, M., and R. Benezra. 1999. Two isoforms of protein disulfide isomerase alter the dimerization status of E2A proteins by a redox mechanism. J. Biol. Chem. 274:1040-1049.
    • (1999) J. Biol. Chem. , vol.274 , pp. 1040-1049
    • Markus, M.1    Benezra, R.2
  • 36
    • 54449091769 scopus 로고    scopus 로고
    • Superoxide anions regulate TORC1 and its ability to bind Fpr1:rapamycin complex
    • Neklesa, T. K., and R. W. Davis. 2008. Superoxide anions regulate TORC1 and its ability to bind Fpr1:rapamycin complex. Proc. Natl. Acad. Sci. U. S. A. 105:15166-15171.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 15166-15171
    • Neklesa, T.K.1    Davis, R.W.2
  • 37
    • 34447558236 scopus 로고    scopus 로고
    • ER chaperones in mammalian development and human diseases
    • Ni, M., and A. S. Lee. 2007. ER chaperones in mammalian development and human diseases. FEBS Lett. 581:3641-3651.
    • (2007) FEBS Lett , vol.581 , pp. 3641-3651
    • Ni, M.1    Lee, A.S.2
  • 38
    • 33748934979 scopus 로고    scopus 로고
    • mTORC2 Caught in a SINful Akt
    • Polak, P., and M. N. Hall. 2006. mTORC2 Caught in a SINful Akt. Dev. Cell 11:433-434.
    • (2006) Dev. Cell , vol.11 , pp. 433-434
    • Polak, P.1    Hall M.N2
  • 39
    • 77956260496 scopus 로고    scopus 로고
    • mTORC1 links protein quality and quantity control by sensing chaperone availability
    • Qian, S. B., et al. 2010. mTORC1 links protein quality and quantity control by sensing chaperone availability. J. Biol. Chem. 285:27385-27395.
    • (2010) J. Biol. Chem. , vol.285 , pp. 27385-27395
    • Qian, S.B.1
  • 40
    • 52949137425 scopus 로고    scopus 로고
    • Cytoplasmic and nuclear distribution of the protein complexes mTORC1 and mTORC2: rapamycin triggers dephosphorylation and delocalization of the mTORC2 components rictor and sin1
    • Rosner, M., and M. Hengstschlager. 2008. Cytoplasmic and nuclear distribution of the protein complexes mTORC1 and mTORC2: rapamycin triggers dephosphorylation and delocalization of the mTORC2 components rictor and sin1. Hum. Mol. Genet. 17:2934-2948.
    • (2008) Hum. Mol. Genet. , vol.17 , pp. 2934-2948
    • Rosner, M.1    Hengstschlager, M.2
  • 41
    • 77951768486 scopus 로고    scopus 로고
    • Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
    • Sancak, Y., et al. 2010. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141:290-303.
    • (2010) Cell , vol.141 , pp. 290-303
    • Sancak, Y.1
  • 42
    • 45849105156 scopus 로고    scopus 로고
    • The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
    • Sancak, Y., et al. 2008. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496-1501.
    • (2008) Science , vol.320 , pp. 1496-1501
    • Sancak, Y.1
  • 43
    • 3342895823 scopus 로고    scopus 로고
    • Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
    • Sarbassov, D. D., et al. 2004. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14:1296-1302.
    • (2004) Curr. Biol. , vol.14 , pp. 1296-1302
    • Sarbassov, D.D.1
  • 45
    • 33646023695 scopus 로고    scopus 로고
    • Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB
    • Sarbassov, D. D., et al. 2006. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 22:159-168.
    • (2006) Mol. Cell , vol.22 , pp. 159-168
    • Sarbassov, D.D.1
  • 46
    • 13844312400 scopus 로고    scopus 로고
    • Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
    • Sarbassov, D. D., D. A. Guertin, S. M. Ali, and D. M. Sabatini. 2005. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098-1101.
    • (2005) Science , vol.307 , pp. 1098-1101
    • Sarbassov, D.D.1    Guertin, D.A.2    Ali, S.M.3    Sabatini, D.M.4
  • 47
    • 28244469041 scopus 로고    scopus 로고
    • Redox regulation of the nutrient-sensitive raptor-mTOR pathway and complex
    • Sarbassov, D. D., and D. M. Sabatini. 2005. Redox regulation of the nutrient-sensitive raptor-mTOR pathway and complex. J. Biol. Chem. 280:39505- 39509.
    • (2005) J. Biol. Chem. , vol.280 , pp. 39505-39509
    • Sarbassov, D.D.1    Sabatini, D.M.2
  • 48
    • 26944432394 scopus 로고    scopus 로고
    • Differential cooperative enzymatic activities of protein disulfide isomerase family in protein folding
    • Satoh, M., A. Shimada, A. Kashiwai, S. Saga, and M. Hosokawa. 2005. Differential cooperative enzymatic activities of protein disulfide isomerase family in protein folding. Cell Stress Chaperones 10:211-220.
    • (2005) Cell Stress Chaperones , vol.10 , pp. 211-220
    • Satoh, M.1    Shimada, A.2    Kashiwai, A.3    Saga, S.4    Hosokawa, M.5
  • 49
    • 49249124901 scopus 로고    scopus 로고
    • Phospho-proteomic approach to identify new targets of leucine deprivation in muscle cells
    • Talvas, J., et al. 2008. Phospho-proteomic approach to identify new targets of leucine deprivation in muscle cells. Anal. Biochem. 381:148-150.
    • (2008) Anal. Biochem. , vol.381 , pp. 148-150
    • Talvas, J.1
  • 50
    • 62849111751 scopus 로고    scopus 로고
    • Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: competition with rapamycin
    • Toschi, A., et al. 2009. Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: competition with rapamycin. Mol. Cell. Biol. 29:1411-1420.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 1411-1420
    • Toschi, A.1
  • 51
    • 0036836665 scopus 로고    scopus 로고
    • Proteins of the PDI family: unpredicted non-ER locations and functions
    • Turano, C., S. Coppari, F. Altieri, and A. Ferraro. 2002. Proteins of the PDI family: unpredicted non-ER locations and functions. J. Cell Physiol. 193: 154-163.
    • (2002) J. Cell Physiol. , vol.193 , pp. 154-163
    • Turano, C.1    Coppari, S.2    Altieri, F.3    Ferraro, A.4
  • 52
    • 33845426904 scopus 로고    scopus 로고
    • Effects of rapamycin on cell proliferation and phosphorylation of mTOR and p70(S6K) in HepG2 and HepG2 cells overexpressing constitutively active Akt/PKB
    • Varma, S., and R. L. Khandelwal. 2007. Effects of rapamycin on cell proliferation and phosphorylation of mTOR and p70(S6K) in HepG2 and HepG2 cells overexpressing constitutively active Akt/PKB. Biochim. Biophys. Acta 1770:71-78.
    • (2007) Biochim. Biophys. Acta , vol.1770 , pp. 71-78
    • Varma, S.1    Khandelwal, R.L.2
  • 53
    • 5644247970 scopus 로고    scopus 로고
    • Modular architecture and novel protein-protein interactions regulating the RGS-containing Rho guanine nucleotide exchange factors
    • Vazquez-Prado, J., J. Basile, and J. S. Gutkind. 2004. Modular architecture and novel protein-protein interactions regulating the RGS-containing Rho guanine nucleotide exchange factors. Methods Enzymol. 390:259-285.
    • (2004) Methods Enzymol , vol.390 , pp. 259-285
    • Vazquez-Prado, J.1    Basile, J.2    Gutkind, J.S.3
  • 54
    • 33749431713 scopus 로고    scopus 로고
    • The mTOR pathway in the control of protein synthesis
    • Wang, X., and C. G. Proud. 2006. The mTOR pathway in the control of protein synthesis. Physiology (Bethesda) 21:362-369.
    • (2006) Physiology (Bethesda) , vol.21 , pp. 362-369
    • Wang, X.1    Proud, C.G.2
  • 55
    • 32044465506 scopus 로고    scopus 로고
    • TOR signaling in growth and metabolism
    • Wullschleger, S., R. Loewith, and M. N. Hall. 2006. TOR signaling in growth and metabolism. Cell 124:471-484.
    • (2006) Cell , vol.124 , pp. 471-484
    • Wullschleger, S.1    Loewith, R.2    Hall, M.N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.