메뉴 건너뛰기




Volumn 16, Issue 1, 2011, Pages 63-79

Evaluating Mixture Modeling for Clustering: Recommendations and Cautions

Author keywords

Cluster analysis; K means clustering; Mixture modeling

Indexed keywords

ARTICLE; BEHAVIORAL RESEARCH; CLUSTER ANALYSIS; HUMAN; METHODOLOGY; MONTE CARLO METHOD; MULTIVARIATE ANALYSIS; SAMPLE SIZE; STATISTICAL ANALYSIS; STATISTICAL MODEL;

EID: 79952595368     PISSN: 1082989X     EISSN: None     Source Type: Journal    
DOI: 10.1037/a0022673     Document Type: Article
Times cited : (128)

References (106)
  • 2
    • 21844522039 scopus 로고
    • A study of classification capabilities of neural networks using unsupervised learning: A comparison with K-means clustering
    • Balakrishnan P.V., Cooper M.C., Jacob V.S., Lewis P.A. A study of classification capabilities of neural networks using unsupervised learning: A comparison with K-means clustering. Psychometrika 1994, 59:509-525.
    • (1994) Psychometrika , vol.59 , pp. 509-525
    • Balakrishnan, P.V.1    Cooper, M.C.2    Jacob, V.S.3    Lewis, P.A.4
  • 3
    • 33746292503 scopus 로고    scopus 로고
    • An extension of Morel-Nagaraj's finite mixture distribution for modelling multinomial clustered data
    • Banerjee T., Paul S.R. An extension of Morel-Nagaraj's finite mixture distribution for modelling multinomial clustered data. Biometrika 1999, 86:723-727.
    • (1999) Biometrika , vol.86 , pp. 723-727
    • Banerjee, T.1    Paul, S.R.2
  • 4
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield J.D., Raftery A.E. Model-based Gaussian and non-Gaussian clustering. Biometrics 1993, 49:803-821.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 6
    • 23744451252 scopus 로고    scopus 로고
    • Condom use, frequency of sex, and number of partners: Multidimensional characterization of adolescent sexual risk-taking
    • Beadnell B., Morrison D.M., Wilsdon A., Wells E.A., Murowchick E., Hoppe M., Nahom D. Condom use, frequency of sex, and number of partners: Multidimensional characterization of adolescent sexual risk-taking. Journal of Sex Research 2005, 42:192-202.
    • (2005) Journal of Sex Research , vol.42 , pp. 192-202
    • Beadnell, B.1    Morrison, D.M.2    Wilsdon, A.3    Wells, E.A.4    Murowchick, E.5    Hoppe, M.6    Nahom, D.7
  • 7
    • 85047669234 scopus 로고    scopus 로고
    • A comparison of maximum covariance and K-means cluster analysis in classifying cases into known taxon groups
    • Beauchaine T.P., Beauchaine R.J. A comparison of maximum covariance and K-means cluster analysis in classifying cases into known taxon groups. Psychological Methods 2002, 7:245-261.
    • (2002) Psychological Methods , vol.7 , pp. 245-261
    • Beauchaine, T.P.1    Beauchaine, R.J.2
  • 8
    • 58149411423 scopus 로고
    • Mixture model tests of cluster analysis: Accuracy of four agglomerative hierarchical methods
    • Blashfield R.K. Mixture model tests of cluster analysis: Accuracy of four agglomerative hierarchical methods. Psychological Bulletin 1976, 83:377-388.
    • (1976) Psychological Bulletin , vol.83 , pp. 377-388
    • Blashfield, R.K.1
  • 9
    • 10844257374 scopus 로고    scopus 로고
    • Clustering binary data in the presence of masking variables
    • Brusco M.J. Clustering binary data in the presence of masking variables. Psychological Methods 2004, 9:510-523.
    • (2004) Psychological Methods , vol.9 , pp. 510-523
    • Brusco, M.J.1
  • 10
    • 0035534927 scopus 로고    scopus 로고
    • A variable-selection heuristic for K-means clustering
    • Brusco M.J., Cradit J.D. A variable-selection heuristic for K-means clustering. Psychometrika 2001, 66:249-270.
    • (2001) Psychometrika , vol.66 , pp. 249-270
    • Brusco, M.J.1    Cradit, J.D.2
  • 11
    • 38949174601 scopus 로고    scopus 로고
    • A comparison of heuristic procedures for minimum within-cluster sums of squares partitioning
    • Brusco M.J., Steinley D. A comparison of heuristic procedures for minimum within-cluster sums of squares partitioning. Psychometrika 2007, 72:583-600.
    • (2007) Psychometrika , vol.72 , pp. 583-600
    • Brusco, M.J.1    Steinley, D.2
  • 13
    • 29044448080 scopus 로고    scopus 로고
    • The type A-type B classification in a community sample of problem drinkers: Structural and predictive validity
    • Carpenter K.M., Liu X., Hasin D.S. The type A-type B classification in a community sample of problem drinkers: Structural and predictive validity. Addictive Behaviors 2006, 31:15-30.
    • (2006) Addictive Behaviors , vol.31 , pp. 15-30
    • Carpenter, K.M.1    Liu, X.2    Hasin, D.S.3
  • 14
    • 0034241064 scopus 로고    scopus 로고
    • Detecting latent taxa: Monte Carlo comparison of taxometric, mixture model, and clustering procedures
    • Cleland C.M., Rothschild L., Haslam N. Detecting latent taxa: Monte Carlo comparison of taxometric, mixture model, and clustering procedures. Psychological Reports 2000, 87:37-47.
    • (2000) Psychological Reports , vol.87 , pp. 37-47
    • Cleland, C.M.1    Rothschild, L.2    Haslam, N.3
  • 16
    • 0032337237 scopus 로고    scopus 로고
    • Detecting features in spatial point processes with clutter via model-based clustering
    • Dasgupta A., Raftery A.E. Detecting features in spatial point processes with clutter via model-based clustering. Journal of the American Statistical Association 1998, 93:294-302.
    • (1998) Journal of the American Statistical Association , vol.93 , pp. 294-302
    • Dasgupta, A.1    Raftery, A.E.2
  • 17
    • 0001381164 scopus 로고
    • Estimating the components of a mixture of normal distributions
    • Day N.E. Estimating the components of a mixture of normal distributions. Biometrika 1969, 56:463-474.
    • (1969) Biometrika , vol.56 , pp. 463-474
    • Day, N.E.1
  • 18
    • 12344336440 scopus 로고    scopus 로고
    • A conceptual and psychometric framework for distinguishing categories and dimensions
    • De Boeck P., Wilson M., Acton G.S. A conceptual and psychometric framework for distinguishing categories and dimensions. Psychological Review 2005, 112:129-158.
    • (2005) Psychological Review , vol.112 , pp. 129-158
    • De Boeck, P.1    Wilson, M.2    Acton, G.S.3
  • 19
    • 33747187884 scopus 로고    scopus 로고
    • Effects of group size and lack of sphericity on the recovery of clusters in K-means cluster analysis
    • de Craen S., Commandeur J.J.F., Frank L.E., Heiser W.J. Effects of group size and lack of sphericity on the recovery of clusters in K-means cluster analysis. Multivariate Behavioral Research 2006, 41:127-145.
    • (2006) Multivariate Behavioral Research , vol.41 , pp. 127-145
    • de Craen, S.1    Commandeur, J.J.F.2    Frank, L.E.3    Heiser, W.J.4
  • 21
    • 0038879572 scopus 로고
    • Maximum likelihood estimation for mixtures of two normal distributions
    • Dick N.P., Bowden D.C. Maximum likelihood estimation for mixtures of two normal distributions. Biometrics 1973, 29:781-790.
    • (1973) Biometrics , vol.29 , pp. 781-790
    • Dick, N.P.1    Bowden, D.C.2
  • 22
    • 33646932477 scopus 로고    scopus 로고
    • Multidimensional scaling modelling approach to latent profile analysis in psychological research
    • Ding C.S. Multidimensional scaling modelling approach to latent profile analysis in psychological research. International Journal of Psychology 2006, 41:226-238.
    • (2006) International Journal of Psychology , vol.41 , pp. 226-238
    • Ding, C.S.1
  • 23
    • 21844524255 scopus 로고
    • The effects of within-group covariance structure on recovery in cluster analysis: I. The bivariate case
    • Donoghue J.R. The effects of within-group covariance structure on recovery in cluster analysis: I. The bivariate case. Multivariate Behavioral Research 1995, 30:227-254.
    • (1995) Multivariate Behavioral Research , vol.30 , pp. 227-254
    • Donoghue, J.R.1
  • 24
    • 0011567449 scopus 로고
    • A Monte Carlo investigation of the likelihood ratio test for the number of components in a mixture of normal distributions
    • Everitt B.S. A Monte Carlo investigation of the likelihood ratio test for the number of components in a mixture of normal distributions. Multivariate Behavioral Research 1981, 16:171-180.
    • (1981) Multivariate Behavioral Research , vol.16 , pp. 171-180
    • Everitt, B.S.1
  • 25
    • 0032131702 scopus 로고    scopus 로고
    • Algorithms for model-based Gaussian hierarchical clustering
    • Fraley C. Algorithms for model-based Gaussian hierarchical clustering. SIAM Journal on Scientific Computing 1998, 20:270-281.
    • (1998) SIAM Journal on Scientific Computing , vol.20 , pp. 270-281
    • Fraley, C.1
  • 26
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via model-based cluster analysis
    • Fraley C., Raftery A.E. How many clusters? Which clustering method? Answers via model-based cluster analysis. Computer Journal 1998, 41:578-588.
    • (1998) Computer Journal , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 27
    • 0040539004 scopus 로고
    • Classification and mixture approach to clustering via maximum likelihood
    • Ganesalingam S. Classification and mixture approach to clustering via maximum likelihood. Applied Statistics 1989, 38:455-466.
    • (1989) Applied Statistics , vol.38 , pp. 455-466
    • Ganesalingam, S.1
  • 28
    • 0012305994 scopus 로고
    • Three multivariate models: Factor analysis, latent structure analysis and latent profile analysis
    • Gibson W.A. Three multivariate models: Factor analysis, latent structure analysis and latent profile analysis. Psychometrika 1959, 24:229-252.
    • (1959) Psychometrika , vol.24 , pp. 229-252
    • Gibson, W.A.1
  • 30
  • 31
    • 84985841339 scopus 로고
    • A computational study of replicated clustering with an application to market segmentation
    • Helsen K., Green P.E. A computational study of replicated clustering with an application to market segmentation. Decision Sciences 1991, 22:1124-1141.
    • (1991) Decision Sciences , vol.22 , pp. 1124-1141
    • Helsen, K.1    Green, P.E.2
  • 33
    • 12344305155 scopus 로고    scopus 로고
    • Model based clustering of large data sets: Tracing the development of spelling ability
    • Hoijtink H., Notenboom A. Model based clustering of large data sets: Tracing the development of spelling ability. Psychometrika 2004, 69:481-498.
    • (2004) Psychometrika , vol.69 , pp. 481-498
    • Hoijtink, H.1    Notenboom, A.2
  • 35
    • 33744998469 scopus 로고    scopus 로고
    • An extension of multiple correspondence analysis for identifying heterogeneous subgroups of respondents
    • Hwang H., Dillon W.R., Takane Y. An extension of multiple correspondence analysis for identifying heterogeneous subgroups of respondents. Psychometrika 2006, 71:161-171.
    • (2006) Psychometrika , vol.71 , pp. 161-171
    • Hwang, H.1    Dillon, W.R.2    Takane, Y.3
  • 40
    • 0016784903 scopus 로고
    • A Monte Carlo comparison for six clustering procedures
    • Kuiper F.K., Fisher L. A Monte Carlo comparison for six clustering procedures. Biometrics 1975, 31:777-784.
    • (1975) Biometrics , vol.31 , pp. 777-784
    • Kuiper, F.K.1    Fisher, L.2
  • 41
    • 0000307541 scopus 로고
    • Appraisal and coping processes in acute time-limited stressful situations: A study of police officers
    • Larsson G., Kempe C., Starrin B. Appraisal and coping processes in acute time-limited stressful situations: A study of police officers. European Journal of Personality 1988, 2:259-276.
    • (1988) European Journal of Personality , vol.2 , pp. 259-276
    • Larsson, G.1    Kempe, C.2    Starrin, B.3
  • 43
    • 0001453756 scopus 로고
    • The logical and mathematical foundations of latent structure analysis
    • Princeton University Press, Princeton, NJ, S.A. Stouffer (Ed.)
    • Lazarsfeld P.F. The logical and mathematical foundations of latent structure analysis. Measurement and prediction 1950, 362-412. Princeton University Press, Princeton, NJ. S.A. Stouffer (Ed.).
    • (1950) Measurement and prediction , pp. 362-412
    • Lazarsfeld, P.F.1
  • 46
    • 33847267269 scopus 로고    scopus 로고
    • Resolving the latent structure of schizophrenia endophenotypes using expectation-maximization-based finite mixture modeling
    • Lenzenweger M.F., McLachlan G., Rubin D.B. Resolving the latent structure of schizophrenia endophenotypes using expectation-maximization-based finite mixture modeling. Journal of Abnormal Psychology 2007, 116:16-29.
    • (2007) Journal of Abnormal Psychology , vol.116 , pp. 16-29
    • Lenzenweger, M.F.1    McLachlan, G.2    Rubin, D.B.3
  • 47
    • 0002569771 scopus 로고    scopus 로고
    • Second-generation structural equation modeling with a combination of categorical and continuous variables: New opportunities for latent class/latent growth modeling
    • American Psychological Association, Washington, DC, L.M. Collins, A. Sayer (Eds.)
    • Muthén B. Second-generation structural equation modeling with a combination of categorical and continuous variables: New opportunities for latent class/latent growth modeling. New methods for the analysis of change 2001, 291-322. American Psychological Association, Washington, DC. L.M. Collins, A. Sayer (Eds.).
    • (2001) New methods for the analysis of change , pp. 291-322
    • Muthén, B.1
  • 48
    • 0013297364 scopus 로고    scopus 로고
    • Beyond SEM: General latent variable modeling
    • Muthén B. Beyond SEM: General latent variable modeling. Behaviormetrika 2002, 29:81-117.
    • (2002) Behaviormetrika , vol.29 , pp. 81-117
    • Muthén, B.1
  • 49
    • 17444413035 scopus 로고    scopus 로고
    • Investigating population heterogeneity with factor mixture models
    • Lubke G.H., Muthén B. Investigating population heterogeneity with factor mixture models. Psychological Methods 2005, 10:21-39.
    • (2005) Psychological Methods , vol.10 , pp. 21-39
    • Lubke, G.H.1    Muthén, B.2
  • 50
    • 33846999872 scopus 로고    scopus 로고
    • Distinguishing between latent classes and continuous factors: Resolution by maximum likelihood?
    • Lubke G.H., Neale M.C. Distinguishing between latent classes and continuous factors: Resolution by maximum likelihood?. Multivariate Behavioral Research 2006, 41:499-532.
    • (2006) Multivariate Behavioral Research , vol.41 , pp. 499-532
    • Lubke, G.H.1    Neale, M.C.2
  • 51
    • 0001457509 scopus 로고
    • Some methods of classification and analysis of multivariate observations
    • University of California Press, Berkeley, CA, L.M. Le Cam, J. Neyman (Eds.)
    • MacQueen J. Some methods of classification and analysis of multivariate observations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability 1967, 1:281-297. University of California Press, Berkeley, CA. L.M. Le Cam, J. Neyman (Eds.).
    • (1967) Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability , vol.1 , pp. 281-297
    • MacQueen, J.1
  • 52
    • 0033919664 scopus 로고    scopus 로고
    • Mixture models, robustness, and the weighted likelihood methodology
    • Markatou M. Mixture models, robustness, and the weighted likelihood methodology. Biometrics 2000, 56:483-486.
    • (2000) Biometrics , vol.56 , pp. 483-486
    • Markatou, M.1
  • 53
    • 33748795373 scopus 로고    scopus 로고
    • Information-theoretic latent distribution modeling: Distinguishing discrete and continuous latent variable models
    • Markon K.E., Krueger R. Information-theoretic latent distribution modeling: Distinguishing discrete and continuous latent variable models. Psychological Methods 2006, 11:228-243.
    • (2006) Psychological Methods , vol.11 , pp. 228-243
    • Markon, K.E.1    Krueger, R.2
  • 55
    • 33846151717 scopus 로고    scopus 로고
    • Profile of children investigated for sexual abuse: Association with psychopathology symptoms and services
    • McCrae J.S., Chapman M.V., Christ S.L. Profile of children investigated for sexual abuse: Association with psychopathology symptoms and services. American Journal of Orthopsychiatry 2006, 76:468-481.
    • (2006) American Journal of Orthopsychiatry , vol.76 , pp. 468-481
    • McCrae, J.S.1    Chapman, M.V.2    Christ, S.L.3
  • 57
    • 0346142060 scopus 로고
    • On the choice of starting values for the EM algorithm in fitting mixture models
    • McLachlan G.J. On the choice of starting values for the EM algorithm in fitting mixture models. Statistician 1988, 37:417-425.
    • (1988) Statistician , vol.37 , pp. 417-425
    • McLachlan, G.J.1
  • 59
    • 23744437299 scopus 로고    scopus 로고
    • On a resampling approach for test on the number of clusters with mixture model-based clustering of tissue samples
    • McLachlan G.J., Khan N. On a resampling approach for test on the number of clusters with mixture model-based clustering of tissue samples. Journal of Multivariate Analysis 2004, 90:90-105.
    • (2004) Journal of Multivariate Analysis , vol.90 , pp. 90-105
    • McLachlan, G.J.1    Khan, N.2
  • 62
    • 0034826101 scopus 로고    scopus 로고
    • An experimental comparison of model-based clustering methods
    • Meila M., Heckerman D. An experimental comparison of model-based clustering methods. Machine Learning 2001, 42:9-29.
    • (2001) Machine Learning , vol.42 , pp. 9-29
    • Meila, M.1    Heckerman, D.2
  • 63
    • 33847457966 scopus 로고
    • An examination of the effect of six types of error perturbation on fifteen clustering algorithms
    • Milligan G.W. An examination of the effect of six types of error perturbation on fifteen clustering algorithms. Psychometrika 1980, 45:325-342.
    • (1980) Psychometrika , vol.45 , pp. 325-342
    • Milligan, G.W.1
  • 64
    • 0002271592 scopus 로고    scopus 로고
    • Clustering validation, results and implications for applied analysis
    • World Scientific, River Edge, NJ, P. Arabie, L.J. Hubert, G. De Soete (Eds.)
    • Milligan G.W. Clustering validation, results and implications for applied analysis. Clustering and classification 1996, 341-375. World Scientific, River Edge, NJ. P. Arabie, L.J. Hubert, G. De Soete (Eds.).
    • (1996) Clustering and classification , pp. 341-375
    • Milligan, G.W.1
  • 65
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • Milligan G.W., Cooper M.C. An examination of procedures for determining the number of clusters in a data set. Psychometrika 1985, 50:159-179.
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 66
    • 84948872101 scopus 로고
    • A study of the comparability of external criteria for hierarchical cluster analysis
    • Milligan G.W., Cooper M.C. A study of the comparability of external criteria for hierarchical cluster analysis. Multivariate Behavioral Research 1986, 21:441-458.
    • (1986) Multivariate Behavioral Research , vol.21 , pp. 441-458
    • Milligan, G.W.1    Cooper, M.C.2
  • 67
    • 0000235019 scopus 로고
    • A study of standardization of variables in cluster analysis
    • Milligan G.W., Cooper M.C. A study of standardization of variables in cluster analysis. Journal of Classification 1988, 5:181-204.
    • (1988) Journal of Classification , vol.5 , pp. 181-204
    • Milligan, G.W.1    Cooper, M.C.2
  • 68
    • 84965875255 scopus 로고
    • A two-stage clustering algorithm with robust recovery characteristics
    • Milligan G.W., Sokol L.M. A two-stage clustering algorithm with robust recovery characteristics. Educational & Psychological Measurement 1980, 40:755-759.
    • (1980) Educational & Psychological Measurement , vol.40 , pp. 755-759
    • Milligan, G.W.1    Sokol, L.M.2
  • 70
    • 0037926209 scopus 로고
    • On the arbitrary nature of latent variables
    • Sage, Thousand Oaks, CA, A. von Eye, C.C. Clogg (Eds.)
    • Molenaar P.C.M., von Eye A. On the arbitrary nature of latent variables. Latent variable analysis 1994, 226-242. Sage, Thousand Oaks, CA. A. von Eye, C.C. Clogg (Eds.).
    • (1994) Latent variable analysis , pp. 226-242
    • Molenaar, P.C.M.1    von Eye, A.2
  • 71
    • 85047673975 scopus 로고    scopus 로고
    • Combining effect size estimates in meta-analysis with repeated measures and independent groups designs
    • Morris S.B., DeShon R.P. Combining effect size estimates in meta-analysis with repeated measures and independent groups designs. Psychological Methods 2002, 7:105-125.
    • (2002) Psychological Methods , vol.7 , pp. 105-125
    • Morris, S.B.1    DeShon, R.P.2
  • 72
    • 42049119348 scopus 로고    scopus 로고
    • Finding groups using model-based cluster analysis: Heterogeneous emotional self-regulatory processes and heavy alcohol use risk
    • Mun E.Y., von Eye A., Bates M.E., Vaschillo E.G. Finding groups using model-based cluster analysis: Heterogeneous emotional self-regulatory processes and heavy alcohol use risk. Developmental Psychology 2008, 44:481-495.
    • (2008) Developmental Psychology , vol.44 , pp. 481-495
    • Mun, E.Y.1    von Eye, A.2    Bates, M.E.3    Vaschillo, E.G.4
  • 73
    • 38649131997 scopus 로고    scopus 로고
    • A model-based cluster analysis approach to adolescent problem behaviors and young adult outcomes
    • Mun E.Y., Windle M., Schainker L.M. A model-based cluster analysis approach to adolescent problem behaviors and young adult outcomes. Development and Psychopathology 2008, 20:291-318.
    • (2008) Development and Psychopathology , vol.20 , pp. 291-318
    • Mun, E.Y.1    Windle, M.2    Schainker, L.M.3
  • 74
    • 39749142111 scopus 로고    scopus 로고
    • Model-based clustering of meta-analytic functional imaging data
    • Neumann J., von Cramon D.Y., Lohmann G. Model-based clustering of meta-analytic functional imaging data. Human Brain Mapping 2008, 29:177-192.
    • (2008) Human Brain Mapping , vol.29 , pp. 177-192
    • Neumann, J.1    von Cramon, D.Y.2    Lohmann, G.3
  • 79
    • 0001565436 scopus 로고
    • The utilization of multiple measurements in problems of biological classification
    • Rao C.R. The utilization of multiple measurements in problems of biological classification. Journal of the Royal Statistical Association B 1948, 10:159-193.
    • (1948) Journal of the Royal Statistical Association B , vol.10 , pp. 159-193
    • Rao, C.R.1
  • 81
    • 0001475895 scopus 로고
    • A graphical technique for determining the number of components in a mixture of normals
    • Roeder K. A graphical technique for determining the number of components in a mixture of normals. Journal of the American Statistical Association 1994, 89:487-495.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 487-495
    • Roeder, K.1
  • 82
    • 84881643247 scopus 로고    scopus 로고
    • Is one good parent enough? Patterns of mother and father parenting and child cognitive outcomes at 24 and 36 months
    • Ryan R., Martin A., Brooks-Gunn J. Is one good parent enough? Patterns of mother and father parenting and child cognitive outcomes at 24 and 36 months. Parenting: Science and Practice 2006, 6:211-228.
    • (2006) Parenting: Science and Practice , vol.6 , pp. 211-228
    • Ryan, R.1    Martin, A.2    Brooks-Gunn, J.3
  • 83
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Annals of Statistics 1978, 6:461-464.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 84
    • 34249003289 scopus 로고    scopus 로고
    • Two subtypes of psychopathic violent offenders that parallel primary and secondary variants
    • Skeem J., Johansson P., Andershed H., Kerr M., Louden J.E. Two subtypes of psychopathic violent offenders that parallel primary and secondary variants. Journal of Abnormal Psychology 2007, 116:395-409.
    • (2007) Journal of Abnormal Psychology , vol.116 , pp. 395-409
    • Skeem, J.1    Johansson, P.2    Andershed, H.3    Kerr, M.4    Louden, J.E.5
  • 85
    • 0142136684 scopus 로고    scopus 로고
    • Local optima in K-means clustering: What you don't know may hurt you
    • Steinley D. Local optima in K-means clustering: What you don't know may hurt you. Psychological Methods 2003, 8:294-304.
    • (2003) Psychological Methods , vol.8 , pp. 294-304
    • Steinley, D.1
  • 86
    • 4344611435 scopus 로고    scopus 로고
    • Properties of the Hubert-Arabie adjusted Rand index
    • Steinley D. Properties of the Hubert-Arabie adjusted Rand index. Psychological Methods 2004, 9:386-396.
    • (2004) Psychological Methods , vol.9 , pp. 386-396
    • Steinley, D.1
  • 87
    • 33744726077 scopus 로고    scopus 로고
    • Standardizing variables in K-means clustering
    • Springer, New York, NY, D. Banks, L. House, F.R. McMorris, P. Arabie, W. Gaul (Eds.)
    • Steinley D. Standardizing variables in K-means clustering. Classification, clustering, and data mining applications 2004, 53-60. Springer, New York, NY. D. Banks, L. House, F.R. McMorris, P. Arabie, W. Gaul (Eds.).
    • (2004) Classification, clustering, and data mining applications , pp. 53-60
    • Steinley, D.1
  • 88
    • 79952589481 scopus 로고    scopus 로고
    • Curse of dimensionality
    • Sage, Thousand Oaks, CA, N.J. Salkind (Ed.)
    • Steinley D. Curse of dimensionality. Encyclopedia of measurement and statistics 2006, 209-211. Sage, Thousand Oaks, CA. N.J. Salkind (Ed.).
    • (2006) Encyclopedia of measurement and statistics , pp. 209-211
    • Steinley, D.1
  • 90
    • 33745700805 scopus 로고    scopus 로고
    • Profiling local optima in K-means clustering: Developing a diagnostic technique
    • Steinley D. Profiling local optima in K-means clustering: Developing a diagnostic technique. Psychological Methods 2006, 11:178-192.
    • (2006) Psychological Methods , vol.11 , pp. 178-192
    • Steinley, D.1
  • 91
    • 34250871625 scopus 로고    scopus 로고
    • Initializing K-means batch clustering: A critical evaluation of several techniques
    • Steinley D., Brusco M.J. Initializing K-means batch clustering: A critical evaluation of several techniques. Journal of Classification 2007, 24:99-121.
    • (2007) Journal of Classification , vol.24 , pp. 99-121
    • Steinley, D.1    Brusco, M.J.2
  • 92
    • 41149180750 scopus 로고    scopus 로고
    • A new variable weighting and selection procedure for K-means cluster analysis
    • Steinley D., Brusco M.J. A new variable weighting and selection procedure for K-means cluster analysis. Multivariate Behavioral Research 2008, 43:77-108.
    • (2008) Multivariate Behavioral Research , vol.43 , pp. 77-108
    • Steinley, D.1    Brusco, M.J.2
  • 93
    • 41449108683 scopus 로고    scopus 로고
    • Selection of variables in cluster analysis: An empirical comparison of eight procedures
    • Steinley D., Brusco M.J. Selection of variables in cluster analysis: An empirical comparison of eight procedures. Psychometrika 2008, 73:125-144.
    • (2008) Psychometrika , vol.73 , pp. 125-144
    • Steinley, D.1    Brusco, M.J.2
  • 94
    • 33744720321 scopus 로고    scopus 로고
    • OCLUS: An analytic method for generating clusters with known overlap
    • Steinley D., Henson R. OCLUS: An analytic method for generating clusters with known overlap. Journal of Classification 2005, 22:221-250.
    • (2005) Journal of Classification , vol.22 , pp. 221-250
    • Steinley, D.1    Henson, R.2
  • 95
    • 34547412862 scopus 로고    scopus 로고
    • Examining factor score distributions to determine the nature of latent spaces
    • Steinley D., McDonald R.P. Examining factor score distributions to determine the nature of latent spaces. Multivariate Behavioral Research 2007, 42:133-156.
    • (2007) Multivariate Behavioral Research , vol.42 , pp. 133-156
    • Steinley, D.1    McDonald, R.P.2
  • 97
    • 0010063566 scopus 로고
    • Who belongs in the family?
    • Thorndike R.L. Who belongs in the family?. Psychometrika 1953, 18:267-276.
    • (1953) Psychometrika , vol.18 , pp. 267-276
    • Thorndike, R.L.1
  • 99
    • 2542529317 scopus 로고    scopus 로고
    • Determining the number of clusters by sampling with replacement
    • Tonidandel S., Overall J.E. Determining the number of clusters by sampling with replacement. Psychological Methods 2004, 9:238-249.
    • (2004) Psychological Methods , vol.9 , pp. 238-249
    • Tonidandel, S.1    Overall, J.E.2
  • 101
    • 0012253128 scopus 로고    scopus 로고
    • Latent class cluster analysis
    • Cambridge University Press, Cambridge, England, J.A. Hagenaars, A.L. McCutcheon (Eds.)
    • Vermunt J., Magdison J. Latent class cluster analysis. Applied latent class analysis 2002, 89-106. Cambridge University Press, Cambridge, England. J.A. Hagenaars, A.L. McCutcheon (Eds.).
    • (2002) Applied latent class analysis , pp. 89-106
    • Vermunt, J.1    Magdison, J.2
  • 102
    • 33845305018 scopus 로고    scopus 로고
    • Use of latent profile analysis to identify eating disorder phenotypes in an adult Australian twin cohort
    • Wade T.D., Crosby R.D., Martin N.G. Use of latent profile analysis to identify eating disorder phenotypes in an adult Australian twin cohort. Archives of General Psychiatry 2006, 63:1377-1384.
    • (2006) Archives of General Psychiatry , vol.63 , pp. 1377-1384
    • Wade, T.D.1    Crosby, R.D.2    Martin, N.G.3
  • 103
    • 0032342923 scopus 로고    scopus 로고
    • A comparison of the classification capabilities of the 1-dimensional Kohonen neural network with two partitioning and three hierarchical cluster analysis algorithms
    • Waller N.G., Kaiser H.A., Illian J.B., Manry M. A comparison of the classification capabilities of the 1-dimensional Kohonen neural network with two partitioning and three hierarchical cluster analysis algorithms. Psychometrika 1998, 63:5-22.
    • (1998) Psychometrika , vol.63 , pp. 5-22
    • Waller, N.G.1    Kaiser, H.A.2    Illian, J.B.3    Manry, M.4
  • 104
  • 105
    • 0000359973 scopus 로고    scopus 로고
    • A constructive, incremental-learning network for mixture modeling and classification
    • Williamson J.R. A constructive, incremental-learning network for mixture modeling and classification. Neural Computation 1997, 9:1517-1543.
    • (1997) Neural Computation , vol.9 , pp. 1517-1543
    • Williamson, J.R.1
  • 106
    • 0012393308 scopus 로고
    • Pattern clustering by multivariate mixture analysis
    • Wolfe J.H. Pattern clustering by multivariate mixture analysis. Multivariate Behavioral Research 1970, 5:329-350.
    • (1970) Multivariate Behavioral Research , vol.5 , pp. 329-350
    • Wolfe, J.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.