-
1
-
-
0016355478
-
A new look at the statistical model identification
-
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716-723.
-
(1974)
IEEE Transactions on Automatic Control
, vol.19
, pp. 716-723
-
-
Akaike, H.1
-
5
-
-
0001941306
-
Cluster analysis in marketing research
-
R. P. Bagozzi (Ed.). Oxford: Blackwell
-
Arabie, P., & Hubert, L. (1994). Cluster analysis in marketing research. In R. P. Bagozzi (Ed.), Advanced methods of marketing research (pp. 160-189). Oxford: Blackwell.
-
(1994)
Advanced Methods of Marketing Research
, pp. 160-189
-
-
Arabie, P.1
Hubert, L.2
-
6
-
-
0007419971
-
Data-based metrics for cluster analysis
-
Art, D., Gnanadesikan, R., & Kettenring, J. R. (1982). Data-based metrics for cluster analysis. Utilitas Mathematica, 21A, 75-99.
-
(1982)
Utilitas Mathematica
, vol.21 A
, pp. 75-99
-
-
Art, D.1
Gnanadesikan, R.2
Kettenring, J.R.3
-
7
-
-
4243469256
-
-
Stanford Artificial Intelligence Project Memorandum AIM-124. Stanford, CA: Stanford University
-
Astrahan, M. M. (1970). Speech analysis by clustering, or the hyperphome method. Stanford Artificial Intelligence Project Memorandum AIM-124. Stanford, CA: Stanford University.
-
(1970)
Speech Analysis by Clustering, or the Hyperphome Method
-
-
Astrahan, M.M.1
-
8
-
-
84973815858
-
Powers of goodness-of-fit tests in detecting balanced mixed normal distributions
-
Bajgier, S. M., & Aggarwal, L. K. (1991). Powers of goodness-of-fit tests in detecting balanced mixed normal distributions. Educational and Psychological Measurement, 51, 253-269.
-
(1991)
Educational and Psychological Measurement
, vol.51
, pp. 253-269
-
-
Bajgier, S.M.1
Aggarwal, L.K.2
-
11
-
-
0001345689
-
Algorithm AS 113. A transfer algorithm for non-hierarchical classification
-
Banfield, C. F., & Bassill, L. C. (1977). Algorithm AS 113. A transfer algorithm for non-hierarchical classification. Applied Statistics, 26, 206-210.
-
(1977)
Applied Statistics
, vol.26
, pp. 206-210
-
-
Banfield, C.F.1
Bassill, L.C.2
-
12
-
-
0027453616
-
Model-based Gaussian and non-Gaussian clustering
-
Banfield, J. D., & Raftery, A. E. (1993). Model-based Gaussian and non-Gaussian clustering. Biometrics, 49, 803-821.
-
(1993)
Biometrics
, vol.49
, pp. 803-821
-
-
Banfield, J.D.1
Raftery, A.E.2
-
13
-
-
84921119089
-
Hierarchic and non-hierarchic grouping methods: An empirical comparisons of two techniques
-
Barker, D. (1976). Hierarchic and non-hierarchic grouping methods: An empirical comparisons of two techniques. Geografiska Annaler, 5, 42-58.
-
(1976)
Geografiska Annaler
, vol.5
, pp. 42-58
-
-
Barker, D.1
-
16
-
-
13344274824
-
An evaluation of taxometric techniques for psychiatric data
-
Bartko, J. J., Strauss, J. S., & Carpenter, W. T., Jr. (1971). An evaluation of taxometric techniques for psychiatric data. Classification Society Bulletin, 2, 2-28.
-
(1971)
Classification Society Bulletin
, vol.2
, pp. 2-28
-
-
Bartko, J.J.1
Strauss, J.S.2
Carpenter Jr., W.T.3
-
17
-
-
0018910526
-
Monte Carlo comparisons of selected clustering procedures
-
Bayne, C. K., Beauchamp, J. J., Begovich, C. L., & Kane, V. E. (1980). Monte Carlo comparisons of selected clustering procedures. Pattern Recognition, 12, 51-62.
-
(1980)
Pattern Recognition
, vol.12
, pp. 51-62
-
-
Bayne, C.K.1
Beauchamp, J.J.2
Begovich, C.L.3
Kane, V.E.4
-
18
-
-
0002969839
-
The use of non-hierarchical allocation methods for clustering large sets of data
-
Belbin, L. (1987). The use of non-hierarchical allocation methods for clustering large sets of data. Australian Computer Journal, 19, 32-41.
-
(1987)
Australian Computer Journal
, vol.19
, pp. 32-41
-
-
Belbin, L.1
-
19
-
-
0001089823
-
Support vector clustering
-
Ben-Hur, A., Horn, D., Siegelmann, H. T., & Vapnik, V. (2001). Support vector clustering. Journal of Machine Learning Research, 2, 125-137.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 125-137
-
-
Ben-Hur, A.1
Horn, D.2
Siegelmann, H.T.3
Vapnik, V.4
-
20
-
-
0015644823
-
Cluster validity with fuzzy sets
-
Bezdek, J. C. (1974). Cluster validity with fuzzy sets. Journal of Cybernetics, 3, 58-73.
-
(1974)
Journal of Cybernetics
, vol.3
, pp. 58-73
-
-
Bezdek, J.C.1
-
22
-
-
0033448562
-
MDL principle for robust vector quantisation
-
Bischof, H., Leonards, A., & Selb, A. (1999). MDL principle for robust vector quantisation. Pattern Analysis and Applications, 2, 59-72.
-
(1999)
Pattern Analysis and Applications
, vol.2
, pp. 59-72
-
-
Bischof, H.1
Leonards, A.2
Selb, A.3
-
23
-
-
0343414755
-
The equivalence of three statistical packages for performing hierarchical cluster analysis
-
Blashfield, R. (1977). The equivalence of three statistical packages for performing hierarchical cluster analysis. Psychometrika, 42, 429-431.
-
(1977)
Psychometrika
, vol.42
, pp. 429-431
-
-
Blashfield, R.1
-
24
-
-
33745216517
-
Validating a cluster analytic solution
-
H. Hudson (Ed.). San Francisco: Jossey-Bass
-
Blashfield, R. K., Aldenderfer, M. S., & Morey, L. C. (1982). Validating a cluster analytic solution. In H. Hudson (Ed.), Classifying social data (pp. 167-176). San Francisco: Jossey-Bass.
-
(1982)
Classifying Social Data
, pp. 167-176
-
-
Blashfield, R.K.1
Aldenderfer, M.S.2
Morey, L.C.3
-
25
-
-
0003158632
-
On some significance tests in cluster analysis
-
Bock, H. H. (1985). On some significance tests in cluster analysis. Journal of Classification, 2, 77-108.
-
(1985)
Journal of Classification
, vol.2
, pp. 77-108
-
-
Bock, H.H.1
-
26
-
-
0002757023
-
Probability models and hypothesis testing in partitioning cluster analysis
-
P. Arabic, L. J. Hubert, & G. De Soete (Eds.). River Edge, NJ: World Scientific
-
Bock, H. H. (1996). Probability models and hypothesis testing in partitioning cluster analysis. In P. Arabic, L. J. Hubert, & G. De Soete (Eds.), Clustering and classification (pp. 377-453). River Edge, NJ: World Scientific.
-
(1996)
Clustering and Classification
, pp. 377-453
-
-
Bock, H.H.1
-
29
-
-
10844257374
-
Clustering binary data in the presence of masking variables
-
Brusco, M. J. (2004). Clustering binary data in the presence of masking variables. Psychological Methods, 9, 510-523.
-
(2004)
Psychological Methods
, vol.9
, pp. 510-523
-
-
Brusco, M.J.1
-
30
-
-
0035534927
-
A variable-selection heuristic for K-means clustering
-
Brusco, M. J., & Cradit, J. D. (2001). A variable-selection heuristic for K-means clustering. Psychometrika, 66, 249-270.
-
(2001)
Psychometrika
, vol.66
, pp. 249-270
-
-
Brusco, M.J.1
Cradit, J.D.2
-
32
-
-
33745201249
-
Quadratic and linear systolic solutions for cluster analysis
-
E. Diday (Ed.). Amsterdam: North-Holland
-
Carmignani, M., Genco, A., Lombardo, A., & Tortorici, A. (1988). Quadratic and linear systolic solutions for cluster analysis. In E. Diday (Ed.), Data analysis and informatics V (pp. 373-380). Amsterdam: North-Holland.
-
(1988)
Data Analysis and Informatics
, vol.5
, pp. 373-380
-
-
Carmignani, M.1
Genco, A.2
Lombardo, A.3
Tortorici, A.4
-
33
-
-
0033229533
-
HINoV: A new model to improve market segment definition by identifying noisy variables
-
Carmone, F. J., Kara, A., & Maxwell, S. (1999). HINoV: A new model to improve market segment definition by identifying noisy variables. Journal of Marketing Research, 36, 501-509.
-
(1999)
Journal of Marketing Research
, vol.36
, pp. 501-509
-
-
Carmone, F.J.1
Kara, A.2
Maxwell, S.3
-
34
-
-
0001347044
-
A general approach to clustering and multidimensional scaling of two-way, three-way, or higher-way data
-
R. D. Luce, M. D'Zmura, D. Hoffman, et al. (Eds.). Mahwah, NJ: Erlbaum
-
Carroll, J. D., & Chaturvedi, A. (1995). A general approach to clustering and multidimensional scaling of two-way, three-way, or higher-way data. In R. D. Luce, M. D'Zmura, D. Hoffman, et al. (Eds.), Geometric representations of perceptual phenomena (pp. 295-318). Mahwah, NJ: Erlbaum.
-
(1995)
Geometric Representations of Perceptual Phenomena
, pp. 295-318
-
-
Carroll, J.D.1
Chaturvedi, A.2
-
35
-
-
33745212964
-
K-midranges clustering
-
A. Rizzi, M. Vichi, & H. H. Bock (Eds.). Berlin: Springer
-
Carroll, J. D., & Chaturvedi, A. (1998). K-midranges clustering. In A. Rizzi, M. Vichi, & H. H. Bock (Eds.), Advances in data science and classification (pp. 3-14). Berlin: Springer.
-
(1998)
Advances in Data Science and Classification
, pp. 3-14
-
-
Carroll, J.D.1
Chaturvedi, A.2
-
36
-
-
0000137166
-
Interpoint distance comparisons in correspondence analysis
-
Carroll, J. D., Green, P. E., & Schaffer, C. M. (1986). Interpoint distance comparisons in correspondence analysis. Journal of Marketing Research, 22, 271-281.
-
(1986)
Journal of Marketing Research
, vol.22
, pp. 271-281
-
-
Carroll, J.D.1
Green, P.E.2
Schaffer, C.M.3
-
37
-
-
0030351528
-
An entropy criterion for assessing the number of clusters in a mixture model
-
Celeux, G., & Soromenho, G. (1996). An entropy criterion for assessing the number of clusters in a mixture model. Journal of Classification, 13, 195-212.
-
(1996)
Journal of Classification
, vol.13
, pp. 195-212
-
-
Celeux, G.1
Soromenho, G.2
-
38
-
-
33745212734
-
A new method for detecting influential observations in nonhierarchical cluster analysis
-
A. Rizzi, M. Vichi, & H. H. Bock (Eds.). Berlin: Springer
-
Cerioli, A. (1998). A new method for detecting influential observations in nonhierarchical cluster analysis. In A. Rizzi, M. Vichi, & H. H. Bock (Eds.), Advances in data science and classification (pp. 15-20). Berlin: Springer.
-
(1998)
Advances in Data Science and Classification
, pp. 15-20
-
-
Cerioli, A.1
-
39
-
-
33745203567
-
Exploratory methods for detecting high density regions in cluster analysis
-
S. Borra, R. Rocci, M. Vichi & M. Schader (Eds.). Berlin: Springer
-
Cerioli, A., & Zani, S. (2001). Exploratory methods for detecting high density regions in cluster analysis. In S. Borra, R. Rocci, M. Vichi & M. Schader (Eds.), Advances in classification and data analysis (pp. 11-18). Berlin: Springer.
-
(2001)
Advances in Classification and Data Analysis
, pp. 11-18
-
-
Cerioli, A.1
Zani, S.2
-
40
-
-
0020998698
-
On using principal components before separating a mixture of two multivariate normal distributions
-
Chang, W. C. (1983). On using principal components before separating a mixture of two multivariate normal distributions. Applied Statistics, 32, 267-275.
-
(1983)
Applied Statistics
, vol.32
, pp. 267-275
-
-
Chang, W.C.1
-
41
-
-
85108017051
-
A feature based approach to market segmentation via overlapping K-centroids clustering
-
Chaturvedi, A. D., Carroll, J. D., Green, P., & Rotondo, J. A. (1997). A feature based approach to market segmentation via overlapping K-centroids clustering. Journal of Marketing Research, 34, 370-377.
-
(1997)
Journal of Marketing Research
, vol.34
, pp. 370-377
-
-
Chaturvedi, A.D.1
Carroll, J.D.2
Green, P.3
Rotondo, J.A.4
-
42
-
-
0035534111
-
K-modes clustering
-
Chaturvedi, A. D., Green, P. E., & Carroll, J. D. (2001). K-modes clustering. Journal of Classification, 18, 35-55.
-
(2001)
Journal of Classification
, vol.18
, pp. 35-55
-
-
Chaturvedi, A.D.1
Green, P.E.2
Carroll, J.D.3
-
44
-
-
0030376226
-
Measuring the influence of individual data points in cluster analysis
-
Cheng, R., & Milligan, G. W. (1996b). Measuring the influence of individual data points in cluster analysis. Journal of Classification, 13, 315-335.
-
(1996)
Journal of Classification
, vol.13
, pp. 315-335
-
-
Cheng, R.1
Milligan, G.W.2
-
45
-
-
0002937787
-
M-dimensional location models: Application to cluster analysis
-
Cooper, L. (1973). M-dimensional location models: Application to cluster analysis. Journal of Regional Science, 13, 41-54.
-
(1973)
Journal of Regional Science
, vol.13
, pp. 41-54
-
-
Cooper, L.1
-
48
-
-
0031493778
-
Trimmed K-means: An attempt to robustify quantizers
-
Cuesta-Albertos, J. A., Gordaliza, A., & Matran, C. (1997). Trimmed K-means: An attempt to robustify quantizers. Annals of Statistics, 25, 553-576.
-
(1997)
Annals of Statistics
, vol.25
, pp. 553-576
-
-
Cuesta-Albertos, J.A.1
Gordaliza, A.2
Matran, C.3
-
51
-
-
0001381164
-
Estimating the components of a mixture of normal distributions
-
Day, N. E. (1969). Estimating the components of a mixture of normal distributions. Biometrika, 56, 463-474.
-
(1969)
Biometrika
, vol.56
, pp. 463-474
-
-
Day, N.E.1
-
53
-
-
33947177850
-
Optimal variable weighting for ultrametric and additive tree clustering
-
De Soete, G. (1986). Optimal variable weighting for ultrametric and additive tree clustering. Quality and Quantity, 20, 169-180.
-
(1986)
Quality and Quantity
, vol.20
, pp. 169-180
-
-
De Soete, G.1
-
54
-
-
0000962917
-
OVWTRE: A program for optimal variable weighting for ultrametric and additive tree fitting
-
De Soete, G. (1988). OVWTRE: A program for optimal variable weighting for ultrametric and additive tree fitting. Journal of Classification, 5, 101-104.
-
(1988)
Journal of Classification
, vol.5
, pp. 101-104
-
-
De Soete, G.1
-
55
-
-
0004408560
-
K-means clustering in a low-dimensional Euclidean space
-
E. Diday, Y. Lechevallier, M. Schader, et al. (Eds.). Berlin: Springer
-
De Soete, G., & Carroll, J. D. (1994). K-means clustering in a low-dimensional Euclidean space. In E. Diday, Y. Lechevallier, M. Schader, et al. (Eds.), New approaches in classification and data analysis (pp. 212-219). Berlin: Springer.
-
(1994)
New Approaches in Classification and Data Analysis
, pp. 212-219
-
-
De Soete, G.1
Carroll, J.D.2
-
56
-
-
0002629270
-
Maximum likelihood from incomplete data via the E-M algorithm
-
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the E-M algorithm. Journal of the Royal Statistical Society B, 39, 1-38.
-
(1977)
Journal of the Royal Statistical Society B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
57
-
-
0002414638
-
Synthesized clustering: A method for amalgamating alternative clustering bases with differential weighting of variables
-
DeSarbo, W. S., Carroll, J. D., Clark, L. A., & Green, P. E. (1984). Synthesized clustering: A method for amalgamating alternative clustering bases with differential weighting of variables. Psychometrika, 49, 57-78.
-
(1984)
Psychometrika
, vol.49
, pp. 57-78
-
-
Desarbo, W.S.1
Carroll, J.D.2
Clark, L.A.3
Green, P.E.4
-
58
-
-
0000727780
-
Constrained classification: The use of a priori information in cluster analysis
-
DeSarbo, W. S., & Mahajan, V. (1984). Constrained classification: The use of a priori information in cluster analysis. Psychometrika, 49, 187-215.
-
(1984)
Psychometrika
, vol.49
, pp. 187-215
-
-
DeSarbo, W.S.1
Mahajan, V.2
-
59
-
-
0038879572
-
Maximum likelihood estimation for mixtures of two normal distributions
-
Dick, N. P., & Bowden, D. C. (1973). Maximum likelihood estimation for mixtures of two normal distributions. Biometrics, 29, 781-790.
-
(1973)
Biometrics
, vol.29
, pp. 781-790
-
-
Dick, N.P.1
Bowden, D.C.2
-
60
-
-
33745204252
-
-
(April). Paper presented at the National Meetings of The Classification Society, Atlanta, Georgia
-
Diehr, G. (1973, April). Minimum variance partitions and mathematical programming. Paper presented at the National Meetings of The Classification Society, Atlanta, Georgia.
-
(1973)
Minimum Variance Partitions and Mathematical Programming
-
-
Diehr, G.1
-
61
-
-
0001326106
-
On the use of component scores in the presence of group structure
-
Dillon, W. R., Mulani, N., & Frederick, D. G. (1989). On the use of component scores in the presence of group structure. Journal of Consumer Research, 16, 106-112.
-
(1989)
Journal of Consumer Research
, vol.16
, pp. 106-112
-
-
Dillon, W.R.1
Mulani, N.2
Frederick, D.G.3
-
62
-
-
0036011451
-
An examination of indices for determining the number of clusters in binary data sets
-
Dimitriadou, E., Dolničar, S., & Weingessel, A. (2002). An examination of indices for determining the number of clusters in binary data sets. Psychometrika, 67, 137-160.
-
(2002)
Psychometrika
, vol.67
, pp. 137-160
-
-
Dimitriadou, E.1
Dolničar, S.2
Weingessel, A.3
-
63
-
-
0004763950
-
Complexity relaxation of dynamic programming for cluster analysis
-
E. Diday, Y. Lechevallier, M. Schader, et al. (Eds.). Berlin: Springer
-
Dodge, Y., & Gafner, T. (1994). Complexity relaxation of dynamic programming for cluster analysis. In E. Diday, Y. Lechevallier, M. Schader, et al. (Eds.), New approaches in classification and data analysis (pp. 220-227). Berlin: Springer.
-
(1994)
New Approaches in Classification and Data Analysis
, pp. 220-227
-
-
Dodge, Y.1
Gafner, T.2
-
64
-
-
21844523554
-
Univariate screening measures for cluster analysis
-
Donoghue, J. R. (1995). Univariate screening measures for cluster analysis. Multivariate Behavioral Research, 30, 385-427.
-
(1995)
Multivariate Behavioral Research
, vol.30
, pp. 385-427
-
-
Donoghue, J.R.1
-
65
-
-
0017010058
-
Clustering techniques: The user's dilemma
-
Dubes, R., & Jain, A. K. (1976). Clustering techniques: The user's dilemma. Pattern Recognition, 8, 247-260.
-
(1976)
Pattern Recognition
, vol.8
, pp. 247-260
-
-
Dubes, R.1
Jain, A.K.2
-
67
-
-
0015644825
-
A fuzzy relative of the ISODATA process and its use in detecting compact well separated clusters
-
Dunn, J. C. (1974). A fuzzy relative of the ISODATA process and its use in detecting compact well separated clusters. Journal of Cybernetics, 3, 32-57.
-
(1974)
Journal of Cybernetics
, vol.3
, pp. 32-57
-
-
Dunn, J.C.1
-
69
-
-
0014749505
-
Bounds on the performance of optimum quantizers
-
Elias, P. (1970). Bounds on the performance of optimum quantizers. IEEE Transactions on Information Theory, 16, 172-184.
-
(1970)
IEEE Transactions on Information Theory
, vol.16
, pp. 172-184
-
-
Elias, P.1
-
71
-
-
0344700024
-
Cluster analysis
-
C. A. O'Muircheartaigh & C. Payne (Eds.). New York: Wiley
-
Everitt, B. S. (1977). Cluster analysis. In C. A. O'Muircheartaigh & C. Payne (Eds.), Exploring data structures (Vol. 1, pp. 63-88). New York: Wiley.
-
(1977)
Exploring Data Structures
, vol.1
, pp. 63-88
-
-
Everitt, B.S.1
-
72
-
-
0018332017
-
Unresolved problems in cluster analysis
-
Everitt, B. S. (1979). Unresolved problems in cluster analysis. Biometrics, 35, 169-181.
-
(1979)
Biometrics
, vol.35
, pp. 169-181
-
-
Everitt, B.S.1
-
73
-
-
0015138786
-
An attempt at validation of traditional psychiatric syndromes by cluster analysis
-
Everitt, B. S., Gourlay, A. J., & Kendall, R. E. (1971). An attempt at validation of traditional psychiatric syndromes by cluster analysis. British Journal of Psychiatry, 119, 399-412.
-
(1971)
British Journal of Psychiatry
, vol.119
, pp. 399-412
-
-
Everitt, B.S.1
Gourlay, A.J.2
Kendall, R.E.3
-
74
-
-
0001218972
-
Clustering and the continuous K-means algorithm
-
Faber, V. (1994). Clustering and the continuous K-means algorithm. Los Alamos Science, 22, 138-144.
-
(1994)
Los Alamos Science
, vol.22
, pp. 138-144
-
-
Faber, V.1
-
75
-
-
33745221934
-
-
(June). Paper presented at the 2001 International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences, Las Vegas, Nevada
-
Falkenauer, E., & Marchand, A. (2001, June). Using K-Means? Consider ArrayMiner. Paper presented at the 2001 International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences, Las Vegas, Nevada.
-
(2001)
Using K-Means? Consider ArrayMiner
-
-
Falkenauer, E.1
Marchand, A.2
-
76
-
-
0001925540
-
Admissible clustering procedures
-
Fisher, L., & Van Ness, J. W. (1971). Admissible clustering procedures. Biometrika, 58, 91-104.
-
(1971)
Biometrika
, vol.58
, pp. 91-104
-
-
Fisher, L.1
Van Ness, J.W.2
-
79
-
-
78751701140
-
Principal points
-
Flury, B. A. (1990). Principal points. Biometrika, 77, 33-41.
-
(1990)
Biometrika
, vol.77
, pp. 33-41
-
-
Flury, B.A.1
-
80
-
-
0000014486
-
Cluster analysis of multivariate data: Efficiency versus interpretability of classifications
-
Forgy, E. W. (1965). Cluster analysis of multivariate data: Efficiency versus interpretability of classifications. Biometrics, 21, 768-769.
-
(1965)
Biometrics
, vol.21
, pp. 768-769
-
-
Forgy, E.W.1
-
81
-
-
0001739908
-
Variable selection in clustering
-
Fowlkes, E. B., Gnanadesikan, R., & Kettenring, J. R. (1988). Variable selection in clustering. Journal of Classification, 5, 205-228.
-
(1988)
Journal of Classification
, vol.5
, pp. 205-228
-
-
Fowlkes, E.B.1
Gnanadesikan, R.2
Kettenring, J.R.3
-
82
-
-
0035998835
-
Model-based clustering, discriminant analysis, and density estimation
-
Fraley, C., & Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association, 97, 611-631.
-
(2002)
Journal of the American Statistical Association
, vol.97
, pp. 611-631
-
-
Fraley, C.1
Raftery, A.E.2
-
85
-
-
33745188532
-
On a modification of the K-means clustering procedure
-
E. Diday (Ed.). Amsterdam: North-Holland
-
Gaenssler, P. (1988). On a modification of the K-means clustering procedure. In E. Diday (Ed.), Data analysis and informatics V (pp. 365-371). Amsterdam: North-Holland.
-
(1988)
Data Analysis and Informatics
, vol.5
, pp. 365-371
-
-
Gaenssler, P.1
-
87
-
-
0000392382
-
Asymptotics for trimmed K-means and associated tolerance zones
-
Garcia-Escudero, L. A., Gordaliza, A., & Matran, C. (1999a). Asymptotics for trimmed K-means and associated tolerance zones. Journal of Statistical Planning and Inference, 77, 247-262.
-
(1999)
Journal of Statistical Planning and Inference
, vol.77
, pp. 247-262
-
-
Garcia-Escudero, L.A.1
Gordaliza, A.2
Matran, C.3
-
88
-
-
0033248629
-
A central limit theorem for multivariate generalized trimmed K-means
-
Garcia-Escudero, L. A., Gordaliza, A., & Matran, C. (1999b). A central limit theorem for multivariate generalized trimmed K-means. Annals of Statistics, 27, 1061-1079.
-
(1999)
Annals of Statistics
, vol.27
, pp. 1061-1079
-
-
Garcia-Escudero, L.A.1
Gordaliza, A.2
Matran, C.3
-
91
-
-
0442314672
-
A comparison of traditional segmentation methods with segmentation based upon artificial neural networks by means of conjoint data from a Monte Carlo simulation
-
I. Balderjahn, R. Mathar, & M. Schader (Eds.). Berlin: Springer
-
Gierl, H., & Schwanenberg, S. (1998). A comparison of traditional segmentation methods with segmentation based upon artificial neural networks by means of conjoint data from a Monte Carlo simulation. In I. Balderjahn, R. Mathar, & M. Schader (Eds.), Classification, data analysis, and data highways (pp. 386-392). Berlin: Springer.
-
(1998)
Classification, Data Analysis, and Data Highways
, pp. 386-392
-
-
Gierl, H.1
Schwanenberg, S.2
-
92
-
-
0014818322
-
An algorithm for detecting unimodal fuzzy sets and its application as a clustering technique
-
Gitman, I., & Levine, M. D. (1970). An algorithm for detecting unimodal fuzzy sets and its application as a clustering technique. IEEE Transactions on Computers, 19, 583-593.
-
(1970)
IEEE Transactions on Computers
, vol.19
, pp. 583-593
-
-
Gitman, I.1
Levine, M.D.2
-
93
-
-
0042547634
-
Mahalanobis metrics for cluster analysis
-
Gnanadesikan, R., Harvey, J. W., & Kettenring, J. R. (1993). Mahalanobis metrics for cluster analysis. Sankhyā A, 55, 494-505.
-
(1993)
Sankhyā A
, vol.55
, pp. 494-505
-
-
Gnanadesikan, R.1
Harvey, J.W.2
Kettenring, J.R.3
-
94
-
-
21844501258
-
Weighting and selection of variables for cluster analysis
-
Gnanadesikan, R., Kettenring, J. R., & Tsao, S. L. (1995). Weighting and selection of variables for cluster analysis. Journal of Classification, 12, 113-136.
-
(1995)
Journal of Classification
, vol.12
, pp. 113-136
-
-
Gnanadesikan, R.1
Kettenring, J.R.2
Tsao, S.L.3
-
95
-
-
0040435325
-
Classification in the presence of constraints
-
Gordon, A. D. (1973). Classification in the presence of constraints. Biometrics, 29, 821-827.
-
(1973)
Biometrics
, vol.29
, pp. 821-827
-
-
Gordon, A.D.1
-
97
-
-
0017402076
-
An algorithm for Euclidean sum of squares classification
-
Gordon, A. D., & Henderson, J. J. (1977). An algorithm for Euclidean sum of squares classification. Biometrics, 33, 355-362.
-
(1977)
Biometrics
, vol.33
, pp. 355-362
-
-
Gordon, A.D.1
Henderson, J.J.2
-
99
-
-
0001886818
-
Generalized procrustes analysis
-
Gower, J. C. (1975). Generalized Procrustes analysis. Psychometrika, 40, 33-51.
-
(1975)
Psychometrika
, vol.40
, pp. 33-51
-
-
Gower, J.C.1
-
100
-
-
0000710590
-
A preliminary study of optimal variable weighting in K-means clustering
-
Green, P. E., Carmone, F J., & Kim, J. (1990). A preliminary study of optimal variable weighting in K-means clustering. Journal of Classification, 7, 271-285.
-
(1990)
Journal of Classification
, vol.7
, pp. 271-285
-
-
Green, P.E.1
Carmone, F.J.2
Kim, J.3
-
101
-
-
21844481226
-
Alternative approaches to cluster-based market segmentation
-
Green, P. E., & Krieger, A. M. (1995). Alternative approaches to cluster-based market segmentation. Journal of the Market Research Society, 37, 221-239.
-
(1995)
Journal of the Market Research Society
, vol.37
, pp. 221-239
-
-
Green, P.E.1
Krieger, A.M.2
-
102
-
-
33745214269
-
The effects of initial values and the covariance structure on the recovery of some clustering methods
-
H. A. L. Kiers, J. -P. Rasson, P. J. F. Groenen, & M. Schader (Eds.). Berlin: Springer
-
Hajnal, I., & Loosveldt, G. (2000). The effects of initial values and the covariance structure on the recovery of some clustering methods. In H. A. L. Kiers, J. -P. Rasson, P. J. F. Groenen, & M. Schader (Eds.), Data analysis, classification, and related methods (pp. 47-52). Berlin: Springer.
-
(2000)
Data Analysis, Classification, and Related Methods
, pp. 47-52
-
-
Hajnal, I.1
Loosveldt, G.2
-
103
-
-
0012580978
-
-
(Tech. Rep. CS2002-0716). La Jolla, CA: University of California at San Diego
-
Hamerly, G., & Elkan, C. (2002). Learning the K in K-means (Tech. Rep. CS2002-0716). La Jolla, CA: University of California at San Diego.
-
(2002)
Learning the K in K-means
-
-
Hamerly, G.1
Elkan, C.2
-
104
-
-
0032395795
-
Minimum sum of squares clustering in a low dimensional space
-
Hansen, P., Jaumard, B., & Mladenovic, N. (1998). Minimum sum of squares clustering in a low dimensional space. Journal of Classification, 15, 37-55.
-
(1998)
Journal of Classification
, vol.15
, pp. 37-55
-
-
Hansen, P.1
Jaumard, B.2
Mladenovic, N.3
-
106
-
-
0000637050
-
Asymptotic distributions for clustering criteria
-
Hartigan, J. A. (1978). Asymptotic distributions for clustering criteria. Annals of Statistics, 6, 117-131.
-
(1978)
Annals of Statistics
, vol.6
, pp. 117-131
-
-
Hartigan, J.A.1
-
107
-
-
33748888529
-
Statistical theory in clustering
-
Hartigan, J. A. (1985). Statistical theory in clustering. Journal of Classification, 2, 63-76.
-
(1985)
Journal of Classification
, vol.2
, pp. 63-76
-
-
Hartigan, J.A.1
-
108
-
-
0001138328
-
Algorithm AS 136: A k-means clustering algorithm
-
Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm. Applied Statistics, 28, 100-108.
-
(1979)
Applied Statistics
, vol.28
, pp. 100-108
-
-
Hartigan, J.A.1
Wong, M.A.2
-
109
-
-
0003684449
-
-
New York: Springer
-
Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning: Data mining, inference, and prediction. New York: Springer.
-
(2001)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
110
-
-
27144536001
-
Extensions to the K-means algorithm for clustering large data sets with categorical values
-
Huang, Z. (1998). Extensions to the K-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery, 2, 283-304.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, pp. 283-304
-
-
Huang, Z.1
-
112
-
-
0031508490
-
Cluster differences scaling with a within-clusters loss component and a fuzzy successive approximation strategy to avoid local minima
-
Heiser, W. J., & Groenen, P. J. F. (1997). Cluster differences scaling with a within-clusters loss component and a fuzzy successive approximation strategy to avoid local minima. Psychometrika, 62, 63-83.
-
(1997)
Psychometrika
, vol.62
, pp. 63-83
-
-
Heiser, W.J.1
Groenen, P.J.F.2
-
114
-
-
33745198045
-
-
(June). Invited talk presented at the North American Classification Society, Madison, WI
-
Hubert, L. J. (2002, June). John van Ryzin's life and work. Invited talk presented at the North American Classification Society, Madison, WI.
-
(2002)
John Van Ryzin's Life and Work
-
-
Hubert, L.J.1
-
117
-
-
0001518855
-
A general statistical framework for assessing categorical clustering in free recall
-
Hubert, L. J., & Levin, J. R. (1976). A general statistical framework for assessing categorical clustering in free recall. Psychological Bulletin, 83, 1072-1080.
-
(1976)
Psychological Bulletin
, vol.83
, pp. 1072-1080
-
-
Hubert, L.J.1
Levin, J.R.2
-
118
-
-
0031478505
-
Behavioral clustering of school children
-
Huberty, C. J., DiStefano, C., & Kamphaus, R. W. (1997). Behavioral clustering of school children. Multivariate Behavioral Research, 32, 105-134.
-
(1997)
Multivariate Behavioral Research
, vol.32
, pp. 105-134
-
-
Huberty, C.J.1
Distefano, C.2
Kamphaus, R.W.3
-
119
-
-
0023491749
-
Bootstrap technique in cluster analysis
-
Jain, A. K., & Moreau, J. V. (1987). Bootstrap technique in cluster analysis. Pattern Recognition, 20, 547-568.
-
(1987)
Pattern Recognition
, vol.20
, pp. 547-568
-
-
Jain, A.K.1
Moreau, J.V.2
-
120
-
-
0000784896
-
A dynamic programming algorithm for cluster analysis
-
Jensen, R. E. (1969). A dynamic programming algorithm for cluster analysis. Operations Research, 17, 1034-1057.
-
(1969)
Operations Research
, vol.17
, pp. 1034-1057
-
-
Jensen, R.E.1
-
123
-
-
0036647190
-
An efficient K-means clustering algorithm: Analysis and implementation
-
Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., & Wu, A. Y. (2002). An efficient K-means clustering algorithm: analysis and implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 881-892.
-
(2002)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.24
, pp. 881-892
-
-
Kanungo, T.1
Mount, D.M.2
Netanyahu, N.S.3
Piatko, C.D.4
Silverman, R.5
Wu, A.Y.6
-
126
-
-
27944462549
-
A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion
-
Kass, R. E., & Wasserman, L. (1995). A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion. Journal of the American Statistical Association, 90, 928-934.
-
(1995)
Journal of the American Statistical Association
, vol.90
, pp. 928-934
-
-
Kass, R.E.1
Wasserman, L.2
-
127
-
-
0000928401
-
Discrimination by means of components that are orthogonal in the data space
-
Kiers, H. A. L. (1997). Discrimination by means of components that are orthogonal in the data space. Journal of Chemometrics, 11, 533-545.
-
(1997)
Journal of Chemometrics
, vol.11
, pp. 533-545
-
-
Kiers, H.A.L.1
-
128
-
-
33745187644
-
Clustering algorithms for the within-class scatter criterion with a restricte d number of elements per cluster
-
W. Gaul & M. Schader (Eds.). Amsterdam: North-Holland
-
Körkel, M. (1986). Clustering algorithms for the within-class scatter criterion with a restricte d number of elements per cluster. In W. Gaul & M. Schader (Eds.), Classification as a tool for research (pp. 241-247). Amsterdam: North-Holland.
-
(1986)
Classification as a Tool for Research
, pp. 241-247
-
-
Körkel, M.1
-
129
-
-
0023905024
-
A criterion for determining the number of groups in a data set using sum-of-squares clustering
-
Krzanowski, W. J., & Lai, Y. T. (1988). A criterion for determining the number of groups in a data set using sum-of-squares clustering. Biometrics, 44, 23-34.
-
(1988)
Biometrics
, vol.44
, pp. 23-34
-
-
Krzanowski, W.J.1
Lai, Y.T.2
-
131
-
-
0345579696
-
-
Pacific Grove, CA: Brooks/Cole
-
Lattin, J., Carroll, J. D., & Green, P. E. (2003). Analyzing multivariate data. Pacific Grove, CA: Brooks/Cole.
-
(2003)
Analyzing Multivariate Data
-
-
Lattin, J.1
Carroll, J.D.2
Green, P.E.3
-
132
-
-
0036487280
-
The global K-means clustering algorithm
-
Likas, A., Vlassis, N., & Verbeek, J. (2003). The global K-means clustering algorithm. Pattern Recognition, 36, 451-461.
-
(2003)
Pattern Recognition
, vol.36
, pp. 451-461
-
-
Likas, A.1
Vlassis, N.2
Verbeek, J.3
-
133
-
-
0001457509
-
Some methods of classification and analysis of multivariate observations
-
L. M. Le Cam & J. Neyman (Eds.). Berkeley, CA: University of California Press
-
MacQueen, J. (1967). Some methods of classification and analysis of multivariate observations. In L. M. Le Cam & J. Neyman (Eds.), Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (Vol. 1, pp. 281-297). Berkeley, CA: University of California Press.
-
(1967)
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability
, vol.1
, pp. 281-297
-
-
MacQueen, J.1
-
134
-
-
0035420381
-
Clustering massive datasets with applications in software metrics and tomography
-
Maitra, R. (2001). Clustering massive datasets with applications in software metrics and tomography. Technometrics, 43, 336-346.
-
(2001)
Technometrics
, vol.43
, pp. 336-346
-
-
Maitra, R.1
-
135
-
-
0035619721
-
Optimal variable weighting for ultrametric and additive trees and K-means partitioning: Methods and software
-
Makarenkov, V., & Legendre, P. (2001). Optimal variable weighting for ultrametric and additive trees and K-means partitioning: Methods and software. Journal of Classification, 18, 245-271.
-
(2001)
Journal of Classification
, vol.18
, pp. 245-271
-
-
Makarenkov, V.1
Legendre, P.2
-
136
-
-
2942611661
-
Measures of multivariate skewness and kurtosis with applications
-
Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57, 519-530.
-
(1970)
Biometrika
, vol.57
, pp. 519-530
-
-
Mardia, K.V.1
-
137
-
-
0000904196
-
Applications of some measures of multivariate skewness and kurtosis for testing normality and robustness studies
-
Mardia, K. V. (1974). Applications of some measures of multivariate skewness and kurtosis for testing normality and robustness studies. Sankhyā B, 36, 115-128.
-
(1974)
Sankhyā B
, vol.36
, pp. 115-128
-
-
Mardia, K.V.1
-
140
-
-
0016203667
-
Multivariate clustering procedures with variable metrics
-
Maronna, R., & Jacovkis, P. M. (1974). Multivariate clustering procedures with variable metrics. Biometrics, 30, 499-505.
-
(1974)
Biometrics
, vol.30
, pp. 499-505
-
-
Maronna, R.1
Jacovkis, P.M.2
-
141
-
-
0015113659
-
Practical problems in a method of cluster analysis
-
Marriott, F. H. C. (1971). Practical problems in a method of cluster analysis. Biometrics, 27, 501-514.
-
(1971)
Biometrics
, vol.27
, pp. 501-514
-
-
Marriott, F.H.C.1
-
142
-
-
0020970261
-
Non-hierarchical clustering with MASLOC
-
Massart, D. L., Plastria, F., & Kaufman, L. (1983). Non-hierarchical clustering with MASLOC. Pattern Recognition, 16, 507-516.
-
(1983)
Pattern Recognition
, vol.16
, pp. 507-516
-
-
Massart, D.L.1
Plastria, F.2
Kaufman, L.3
-
145
-
-
5644242386
-
MIKCA: A FORTRAN IV iterative K-means cluster analysis program
-
McRae, D. J. (1971). MIKCA: A FORTRAN IV iterative K-means cluster analysis program. Behavioral Science, 16, 423-424.
-
(1971)
Behavioral Science
, vol.16
, pp. 423-424
-
-
McRae, D.J.1
-
146
-
-
0017810723
-
Evaluating clustering methods for psychiatric diagnosis
-
Mezzich, J. E. (1978). Evaluating clustering methods for psychiatric diagnosis. Biological Psychiatry, 13, 265-281.
-
(1978)
Biological Psychiatry
, vol.13
, pp. 265-281
-
-
Mezzich, J.E.1
-
147
-
-
33847457966
-
An examination of the effect of six types of error perturbation on fifteen clustering algorithms
-
Milligan, G. W. (1980). An examination of the effect of six types of error perturbation on fifteen clustering algorithms. Psychometrika, 45, 325-342.
-
(1980)
Psychometrika
, vol.45
, pp. 325-342
-
-
Milligan, G.W.1
-
148
-
-
0000228352
-
A Monte Carlo study of thirty internal criterion measures for cluster analysis
-
Milligan, G. W. (1981). A Monte Carlo study of thirty internal criterion measures for cluster analysis. Psychometrika, 46, 187-199.
-
(1981)
Psychometrika
, vol.46
, pp. 187-199
-
-
Milligan, G.W.1
-
149
-
-
0000272920
-
An algorithm for generating artificial test clusters
-
Milligan, G. W. (1985). An algorithm for generating artificial test clusters. Psychometrika, 50, 123-127.
-
(1985)
Psychometrika
, vol.50
, pp. 123-127
-
-
Milligan, G.W.1
-
150
-
-
0002271592
-
Clustering validation: Results and implications for applied analysis
-
R Arabie, L. J. Hubert, & G. De Soete (Eds.). River Edge, NJ: World Scientific
-
Milligan, G. W. (1996). Clustering validation: Results and implications for applied analysis. In R Arabie, L. J. Hubert, & G. De Soete (Eds.), Clustering and classification (pp. 341-375). River Edge, NJ: World Scientific.
-
(1996)
Clustering and Classification
, pp. 341-375
-
-
Milligan, G.W.1
-
151
-
-
34250115918
-
An examination of procedures for determining the number of clusters in a data set
-
Milligan, G. W., & Cooper, M. C. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50, 159-179.
-
(1985)
Psychometrika
, vol.50
, pp. 159-179
-
-
Milligan, G.W.1
Cooper, M.C.2
-
153
-
-
0000235019
-
A study of standardization of variables in cluster analysis
-
Milligan, G. W, & Cooper, M. C. (1988). A study of standardization of variables in cluster analysis. Journal of Classification, 5, 181-204.
-
(1988)
Journal of Classification
, vol.5
, pp. 181-204
-
-
Milligan, G.W.1
Cooper, M.C.2
-
154
-
-
84965875255
-
A two-stage clustering algorithm with robust recovery characteristics
-
Milligan, G. W., & Sokol, L. M. (1980). A two-stage clustering algorithm with robust recovery characteristics. Educational and Psychological Measurement, 40, 755-759.
-
(1980)
Educational and Psychological Measurement
, vol.40
, pp. 755-759
-
-
Milligan, G.W.1
Sokol, L.M.2
-
155
-
-
0001090009
-
A sequential fitting procedure for linear data analysis models
-
Mirkin, B. G. (1990). A sequential fitting procedure for linear data analysis models. Journal of Classification, 7, 167-195.
-
(1990)
Journal of Classification
, vol.7
, pp. 167-195
-
-
Mirkin, B.G.1
-
157
-
-
84958809475
-
Mathematical classification and clustering: From how to what and why
-
I. Balderjahn, R. Mathar, & M. Schader (Eds.). Berlin: Springer
-
Mirkin, B. G. (1998). Mathematical classification and clustering: From how to what and why. In I. Balderjahn, R. Mathar, & M. Schader (Eds.), Classification, data analysis, and data highways (pp. 172-181). Berlin: Springer.
-
(1998)
Classification, Data Analysis, and Data Highways
, pp. 172-181
-
-
Mirkin, B.G.1
-
158
-
-
33745192343
-
Two principal points of symmetric distributions
-
A. Rizzi, M. Vichi, & H. H. Bock (Eds.). Berlin: Springer-Verlag
-
Mizuta, M. (1998). Two principal points of symmetric distributions. In A. Rizzi, M. Vichi, & H. H. Bock (Eds.), Advances in data science and classification (pp. 171-176). Berlin: Springer-Verlag.
-
(1998)
Advances in Data Science and Classification
, pp. 171-176
-
-
Mizuta, M.1
-
160
-
-
0003136237
-
Efficient and effective clustering methods for spatial data mining
-
J. Bocca, M. Jarke, & C. Zaniolo (Eds.). San Francisco, CA: Morgan Kaufmann
-
Ng, R. T., & Man, J. (1994). Efficient and effective clustering methods for spatial data mining. In J. Bocca, M. Jarke, & C. Zaniolo (Eds.), Proceedings of the 20th international conference on very large databases (pp. 144-155). San Francisco, CA: Morgan Kaufmann.
-
(1994)
Proceedings of the 20th International Conference on Very Large Databases
, pp. 144-155
-
-
Ng, R.T.1
Man, J.2
-
163
-
-
0000963889
-
Strong consistency of K-means clustering
-
Pollard, D. (1981). Strong consistency of K-means clustering. Annals of Statistics, 9, 135-140.
-
(1981)
Annals of Statistics
, vol.9
, pp. 135-140
-
-
Pollard, D.1
-
164
-
-
0000963885
-
A central limit theorem for K-means clustering
-
Pollard, D. (1982). A central limit theorem for K-means clustering. Annals of Probability, 10, 919-926.
-
(1982)
Annals of Probability
, vol.10
, pp. 919-926
-
-
Pollard, D.1
-
165
-
-
0004161838
-
-
Cambridge: Cambridge University Press
-
Press, W. H., Flannery, B. P, Teukolsky, S. A., & Vetterling, W. T. (1986). Numerical recipes, the art of scientific computing. Cambridge: Cambridge University Press.
-
(1986)
Numerical Recipes, the Art of Scientific Computing
-
-
Press, W.H.1
Flannery, B.P.2
Teukolsky, S.A.3
Vetterling, W.T.4
-
166
-
-
0000470917
-
Cluster analysis in marketing research: Review and suggestions for application
-
Punj, G., & Stewart, D. W. (1983). Cluster analysis in marketing research: Review and suggestions for application. Journal of Marketing Research, 20, 134-148.
-
(1983)
Journal of Marketing Research
, vol.20
, pp. 134-148
-
-
Punj, G.1
Stewart, D.W.2
-
167
-
-
0001565436
-
The utilization of multiple measurements in problems of biological classification
-
Rao, C. R. (1948). The utilization of multiple measurements in problems of biological classification. Journal of the Royal Statistical Association B, 10, 159-193.
-
(1948)
Journal of the Royal Statistical Association B
, vol.10
, pp. 159-193
-
-
Rao, C.R.1
-
169
-
-
0002892194
-
Determination of the number of clusters in K-means clustering and application in colour image segmentation
-
N. R. Pal, A. K. De & J. Das (Eds.). New Delhi: Narosa
-
Ray, S., & Turi, R. H. (2000). Determination of the number of clusters in K-means clustering and application in colour image segmentation. In N. R. Pal, A. K. De & J. Das (Eds.), Proceedings of the 4th International Conference on Advances in Pattern Recognition and Digital Techniques (pp. 137-143). New Delhi: Narosa.
-
(2000)
Proceedings of the 4th International Conference on Advances in Pattern Recognition and Digital Techniques
, pp. 137-143
-
-
Ray, S.1
Turi, R.H.2
-
170
-
-
84901276910
-
The FASTCLUS procedure
-
Cary, NC: SAS Institute
-
SAS. (2004). The FASTCLUS procedure. In SAS/STAT 9.1 user's guide, Volume 2. Cary, NC: SAS Institute.
-
(2004)
SAS/STAT 9.1 User's Guide
, vol.2
-
-
-
171
-
-
0030305550
-
An empirical comparison of variable standardization methods in cluster analysis
-
Schaffer, C. M., & Green, P. E. (1996). An empirical comparison of variable standardization methods in cluster analysis. Multivariate Behavioral Research, 31, 149-167.
-
(1996)
Multivariate Behavioral Research
, vol.31
, pp. 149-167
-
-
Schaffer, C.M.1
Green, P.E.2
-
172
-
-
3242820009
-
Cluster-based market segmentation: Some further comparisons of alternative approaches
-
Schaffer, C. M., & Green, P. E. (1998). Cluster-based market segmentation: Some further comparisons of alternative approaches. Journal of the Market Research Society, 40, 155-163.
-
(1998)
Journal of the Market Research Society
, vol.40
, pp. 155-163
-
-
Schaffer, C.M.1
Green, P.E.2
-
173
-
-
0000120766
-
Estimating the dimension of a model
-
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461-464.
-
(1978)
Annals of Statistics
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
174
-
-
0001340183
-
Clustering methods based on likelihood ratio criteria
-
Scott, A. J., & Symons, M. J. (1971). Clustering methods based on likelihood ratio criteria. Biometrics, 27, 387-398.
-
(1971)
Biometrics
, vol.27
, pp. 387-398
-
-
Scott, A.J.1
Symons, M.J.2
-
176
-
-
0021202650
-
K-means type algorithms: A generalized convergence theorem and characterization of local optimality
-
Selim, S. Z., & Ismail, M. A. (1984). K-means type algorithms: A generalized convergence theorem and characterization of local optimality. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 81-87.
-
(1984)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.6
, pp. 81-87
-
-
Selim, S.Z.1
Ismail, M.A.2
-
177
-
-
9444222978
-
The application of computers in taxonomy
-
Sneath, P. H. A. (1957). The application of computers in taxonomy. Journal of General Microbiology, 17, 201-226.
-
(1957)
Journal of General Microbiology
, vol.17
, pp. 201-226
-
-
Sneath, P.H.A.1
-
180
-
-
4243505790
-
Anti-clustering: Maximizing the variance criterion
-
Späth, H. (1986a). Anti-clustering: Maximizing the variance criterion. Control and Cybernetics, 15, 213-218.
-
(1986)
Control and Cybernetics
, vol.15
, pp. 213-218
-
-
Späth, H.1
-
181
-
-
33745224588
-
Maximizing partitioning cluster criteria for quantitative data
-
Späth, H. (1986b). Maximizing partitioning cluster criteria for quantitative data. Studien zur Klassifikation, 17, 221-228.
-
(1986)
Studien Zur Klassifikation
, vol.17
, pp. 221-228
-
-
Späth, H.1
-
183
-
-
0142136684
-
K-means clustering: What you don't know may hurt you
-
Steinley, D. (2003). K-means clustering: What you don't know may hurt you. Psychological Methods, 8, 294-304.
-
(2003)
Psychological Methods
, vol.8
, pp. 294-304
-
-
Steinley, D.1
-
184
-
-
33744726077
-
Standardizing variables in K-means clustering
-
D. Banks, L. House, F. R. McMorris, P. Arabie, & W. Gaul (Eds.). New York: Springer
-
Steinley, D. (2004a). Standardizing variables in K-means clustering. In D. Banks, L. House, F. R. McMorris, P. Arabie, & W. Gaul (Eds.), Classification, clustering, and data mining applications (pp. 53-60). New York: Springer.
-
(2004)
Classification, Clustering, and Data Mining Applications
, pp. 53-60
-
-
Steinley, D.1
-
185
-
-
4344611435
-
Properties of the Hubert-Arabie adjusted Rand index
-
Steinley, D. (2004b). Properties of the Hubert-Arabie adjusted Rand index. Psychological Methods, 9, 386-396.
-
(2004)
Psychological Methods
, vol.9
, pp. 386-396
-
-
Steinley, D.1
-
186
-
-
0018604771
-
Standardization of measures prior to cluster analysis
-
Stoddard, A. M. (1979). Standardization of measures prior to cluster analysis. Biometrics, 35, 765-773.
-
(1979)
Biometrics
, vol.35
, pp. 765-773
-
-
Stoddard, A.M.1
-
187
-
-
0001254122
-
Asymptotics of K-means clustering based on projection pursuit
-
Stute, W., & Zhu, L. X. (1995). Asymptotics of K-means clustering based on projection pursuit. Sankhyā, 57, 462-471.
-
(1995)
Sankhyā
, vol.57
, pp. 462-471
-
-
Stute, W.1
Zhu, L.X.2
-
189
-
-
0002643871
-
Clustering criteria and multivariate normal mixtures
-
Symons, M. J. (1981). Clustering criteria and multivariate normal mixtures. Biometrics, 37, 35-43.
-
(1981)
Biometrics
, vol.37
, pp. 35-43
-
-
Symons, M.J.1
-
190
-
-
21844516918
-
Principal points and self-consistent points of elliptical distributions
-
Tarpey, T, Li, L., & Flury, B. D. (1995). Principal points and self-consistent points of elliptical distributions. Annals of Statistics, 23, 103-112.
-
(1995)
Annals of Statistics
, vol.23
, pp. 103-112
-
-
Tarpey, T.1
Li, L.2
Flury, B.D.3
-
191
-
-
0010063566
-
Who belongs in the family?
-
Thorndike, R. L. (1953). Who belongs in the family? Psychometrika, 18, 267-276.
-
(1953)
Psychometrika
, vol.18
, pp. 267-276
-
-
Thorndike, R.L.1
-
192
-
-
0035532141
-
Estimating the number of cluters in a data set via the gap statistic
-
Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of cluters in a data set via the gap statistic. Journal of the Royal Statistical Society B, 63, 411-423.
-
(2001)
Journal of the Royal Statistical Society B
, vol.63
, pp. 411-423
-
-
Tibshirani, R.1
Walther, G.2
Hastie, T.3
-
194
-
-
0001543785
-
Clustering N objects into K groups under optimal scaling of variables
-
Van Buuren, J., & Heiser, W. J. (1989). Clustering N objects into K groups under optimal scaling of variables. Psychometrika, 54, 699-706.
-
(1989)
Psychometrika
, vol.54
, pp. 699-706
-
-
Van Buuren, J.1
Heiser, W.J.2
-
195
-
-
85041932705
-
Admissible clustering procedures II
-
Van Ness, J. W. (1973). Admissible clustering procedures II. Biometrika, 60, 422-424.
-
(1973)
Biometrika
, vol.60
, pp. 422-424
-
-
Van Ness, J.W.1
-
197
-
-
84942904298
-
Importance of individual variables in the k-means algorithm
-
D. Cheung, G. J. Williams, & Q. Li (Eds.). Berlin: Springer
-
Vesanto, J. (2001). Importance of individual variables in the k-means algorithm. In D. Cheung, G. J. Williams, & Q. Li (Eds.), Proceedings of the Pacific-Asia conference in knowledge discovery and data mining (pp. 513-518). Berlin: Springer.
-
(2001)
Proceedings of the Pacific-Asia Conference in Knowledge Discovery and Data Mining
, pp. 513-518
-
-
Vesanto, J.1
-
200
-
-
0042377235
-
Constrained K-means clustering with background knowledge
-
San Francisco, CA: Morgan Kaufmann
-
Wagstaff, K., Cardie, C., Rogers, S., & Schroedl, S. (2001). Constrained K-means clustering with background knowledge. In Proceedings of the eighteenth international conference on machine learning (pp. 577-584). San Francisco, CA: Morgan Kaufmann.
-
(2001)
Proceedings of the Eighteenth International Conference on Machine Learning
, pp. 577-584
-
-
Wagstaff, K.1
Cardie, C.2
Rogers, S.3
Schroedl, S.4
-
201
-
-
0032342923
-
A comparison of the classification capabilities of the 1-dimensional Kohonen neural network with two partitioning and three hierarchical cluster analysis algorithms
-
Waller, N. G., Kaiser, H. A., Illian, J. B., & Manry, M. (1998). A comparison of the classification capabilities of the 1-dimensional Kohonen neural network with two partitioning and three hierarchical cluster analysis algorithms. Psychometrika, 63, 5-22.
-
(1998)
Psychometrika
, vol.63
, pp. 5-22
-
-
Waller, N.G.1
Kaiser, H.A.2
Illian, J.B.3
Manry, M.4
-
202
-
-
84944178665
-
Hierarchical grouping to optimize an objective function
-
Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236-244.
-
(1963)
Journal of the American Statistical Association
, vol.58
, pp. 236-244
-
-
Ward, J.H.1
-
204
-
-
0001403983
-
Parameter modification for clustering criteria
-
Windham, M. P. (1987). Parameter modification for clustering criteria. Journal of Classification, 4, 191-214.
-
(1987)
Journal of Classification
, vol.4
, pp. 191-214
-
-
Windham, M.P.1
-
206
-
-
0012393308
-
Pattern clustering by multivariate mixture analysis
-
Wolfe, J. H. (1970). Pattern clustering by multivariate mixture analysis. Multivariate Behavioral Research. 5, 329-350.
-
(1970)
Multivariate Behavioral Research.
, vol.5
, pp. 329-350
-
-
Wolfe, J.H.1
-
207
-
-
33745190797
-
Asymptotic properties of univariate population K-means clusters
-
Wong, M. A. (1982a). Asymptotic properties of univariate population K-means clusters. Classification Society Bulletin, 5, 44-50.
-
(1982)
Classification Society Bulletin
, vol.5
, pp. 44-50
-
-
Wong, M.A.1
-
208
-
-
0000645837
-
A hybrid clustering algorithm for identifying high density clusters
-
Wong, M. A. (1982b). A hybrid clustering algorithm for identifying high density clusters. Journal of the American Statistical Association, 77, 841-847.
-
(1982)
Journal of the American Statistical Association
, vol.77
, pp. 841-847
-
-
Wong, M.A.1
-
209
-
-
0001042639
-
Asymptotic properties of univariate sample K-means clusters
-
Wong, M. A. (1984). Asymptotic properties of univariate sample K-means clusters. Journal of Classification, 1, 255-270.
-
(1984)
Journal of Classification
, vol.1
, pp. 255-270
-
-
Wong, M.A.1
-
210
-
-
0004776832
-
A bootstrap testing procedure for investigating the number of subpopulations
-
Wong, M. A. (1985). A bootstrap testing procedure for investigating the number of subpopulations. Journal of Statistical Computation and Simulation, 22, 99-112.
-
(1985)
Journal of Statistical Computation and Simulation
, vol.22
, pp. 99-112
-
-
Wong, M.A.1
-
214
-
-
84862444046
-
-
(Hewlett Packard Technical Report, HPL-1999-124). Palo Alto, CA: Hewlett Packard Laboratories
-
Zhang, B., Hsu, M., & Dayal, U. (1999). K-harmonic means - a data clustering algorithm (Hewlett Packard Technical Report, HPL-1999-124). Palo Alto, CA: Hewlett Packard Laboratories.
-
(1999)
K-harmonic Means - A Data Clustering Algorithm
-
-
Zhang, B.1
Hsu, M.2
Dayal, U.3
|