메뉴 건너뛰기




Volumn 59, Issue 1, 2006, Pages 1-34

K-means clustering: A half-century synthesis

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; CLUSTER ANALYSIS; METHODOLOGY; PSYCHOLOGY; STATISTICAL ANALYSIS; STATISTICS;

EID: 33745223877     PISSN: 00071102     EISSN: None     Source Type: Journal    
DOI: 10.1348/000711005X48266     Document Type: Article
Times cited : (785)

References (214)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716-723.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 5
    • 0001941306 scopus 로고
    • Cluster analysis in marketing research
    • R. P. Bagozzi (Ed.). Oxford: Blackwell
    • Arabie, P., & Hubert, L. (1994). Cluster analysis in marketing research. In R. P. Bagozzi (Ed.), Advanced methods of marketing research (pp. 160-189). Oxford: Blackwell.
    • (1994) Advanced Methods of Marketing Research , pp. 160-189
    • Arabie, P.1    Hubert, L.2
  • 7
    • 4243469256 scopus 로고
    • Stanford Artificial Intelligence Project Memorandum AIM-124. Stanford, CA: Stanford University
    • Astrahan, M. M. (1970). Speech analysis by clustering, or the hyperphome method. Stanford Artificial Intelligence Project Memorandum AIM-124. Stanford, CA: Stanford University.
    • (1970) Speech Analysis by Clustering, or the Hyperphome Method
    • Astrahan, M.M.1
  • 8
    • 84973815858 scopus 로고
    • Powers of goodness-of-fit tests in detecting balanced mixed normal distributions
    • Bajgier, S. M., & Aggarwal, L. K. (1991). Powers of goodness-of-fit tests in detecting balanced mixed normal distributions. Educational and Psychological Measurement, 51, 253-269.
    • (1991) Educational and Psychological Measurement , vol.51 , pp. 253-269
    • Bajgier, S.M.1    Aggarwal, L.K.2
  • 11
    • 0001345689 scopus 로고
    • Algorithm AS 113. A transfer algorithm for non-hierarchical classification
    • Banfield, C. F., & Bassill, L. C. (1977). Algorithm AS 113. A transfer algorithm for non-hierarchical classification. Applied Statistics, 26, 206-210.
    • (1977) Applied Statistics , vol.26 , pp. 206-210
    • Banfield, C.F.1    Bassill, L.C.2
  • 12
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield, J. D., & Raftery, A. E. (1993). Model-based Gaussian and non-Gaussian clustering. Biometrics, 49, 803-821.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 13
    • 84921119089 scopus 로고
    • Hierarchic and non-hierarchic grouping methods: An empirical comparisons of two techniques
    • Barker, D. (1976). Hierarchic and non-hierarchic grouping methods: An empirical comparisons of two techniques. Geografiska Annaler, 5, 42-58.
    • (1976) Geografiska Annaler , vol.5 , pp. 42-58
    • Barker, D.1
  • 18
    • 0002969839 scopus 로고
    • The use of non-hierarchical allocation methods for clustering large sets of data
    • Belbin, L. (1987). The use of non-hierarchical allocation methods for clustering large sets of data. Australian Computer Journal, 19, 32-41.
    • (1987) Australian Computer Journal , vol.19 , pp. 32-41
    • Belbin, L.1
  • 20
    • 0015644823 scopus 로고
    • Cluster validity with fuzzy sets
    • Bezdek, J. C. (1974). Cluster validity with fuzzy sets. Journal of Cybernetics, 3, 58-73.
    • (1974) Journal of Cybernetics , vol.3 , pp. 58-73
    • Bezdek, J.C.1
  • 23
    • 0343414755 scopus 로고
    • The equivalence of three statistical packages for performing hierarchical cluster analysis
    • Blashfield, R. (1977). The equivalence of three statistical packages for performing hierarchical cluster analysis. Psychometrika, 42, 429-431.
    • (1977) Psychometrika , vol.42 , pp. 429-431
    • Blashfield, R.1
  • 24
    • 33745216517 scopus 로고
    • Validating a cluster analytic solution
    • H. Hudson (Ed.). San Francisco: Jossey-Bass
    • Blashfield, R. K., Aldenderfer, M. S., & Morey, L. C. (1982). Validating a cluster analytic solution. In H. Hudson (Ed.), Classifying social data (pp. 167-176). San Francisco: Jossey-Bass.
    • (1982) Classifying Social Data , pp. 167-176
    • Blashfield, R.K.1    Aldenderfer, M.S.2    Morey, L.C.3
  • 25
    • 0003158632 scopus 로고
    • On some significance tests in cluster analysis
    • Bock, H. H. (1985). On some significance tests in cluster analysis. Journal of Classification, 2, 77-108.
    • (1985) Journal of Classification , vol.2 , pp. 77-108
    • Bock, H.H.1
  • 26
    • 0002757023 scopus 로고    scopus 로고
    • Probability models and hypothesis testing in partitioning cluster analysis
    • P. Arabic, L. J. Hubert, & G. De Soete (Eds.). River Edge, NJ: World Scientific
    • Bock, H. H. (1996). Probability models and hypothesis testing in partitioning cluster analysis. In P. Arabic, L. J. Hubert, & G. De Soete (Eds.), Clustering and classification (pp. 377-453). River Edge, NJ: World Scientific.
    • (1996) Clustering and Classification , pp. 377-453
    • Bock, H.H.1
  • 29
    • 10844257374 scopus 로고    scopus 로고
    • Clustering binary data in the presence of masking variables
    • Brusco, M. J. (2004). Clustering binary data in the presence of masking variables. Psychological Methods, 9, 510-523.
    • (2004) Psychological Methods , vol.9 , pp. 510-523
    • Brusco, M.J.1
  • 30
    • 0035534927 scopus 로고    scopus 로고
    • A variable-selection heuristic for K-means clustering
    • Brusco, M. J., & Cradit, J. D. (2001). A variable-selection heuristic for K-means clustering. Psychometrika, 66, 249-270.
    • (2001) Psychometrika , vol.66 , pp. 249-270
    • Brusco, M.J.1    Cradit, J.D.2
  • 32
    • 33745201249 scopus 로고
    • Quadratic and linear systolic solutions for cluster analysis
    • E. Diday (Ed.). Amsterdam: North-Holland
    • Carmignani, M., Genco, A., Lombardo, A., & Tortorici, A. (1988). Quadratic and linear systolic solutions for cluster analysis. In E. Diday (Ed.), Data analysis and informatics V (pp. 373-380). Amsterdam: North-Holland.
    • (1988) Data Analysis and Informatics , vol.5 , pp. 373-380
    • Carmignani, M.1    Genco, A.2    Lombardo, A.3    Tortorici, A.4
  • 33
    • 0033229533 scopus 로고    scopus 로고
    • HINoV: A new model to improve market segment definition by identifying noisy variables
    • Carmone, F. J., Kara, A., & Maxwell, S. (1999). HINoV: A new model to improve market segment definition by identifying noisy variables. Journal of Marketing Research, 36, 501-509.
    • (1999) Journal of Marketing Research , vol.36 , pp. 501-509
    • Carmone, F.J.1    Kara, A.2    Maxwell, S.3
  • 34
    • 0001347044 scopus 로고
    • A general approach to clustering and multidimensional scaling of two-way, three-way, or higher-way data
    • R. D. Luce, M. D'Zmura, D. Hoffman, et al. (Eds.). Mahwah, NJ: Erlbaum
    • Carroll, J. D., & Chaturvedi, A. (1995). A general approach to clustering and multidimensional scaling of two-way, three-way, or higher-way data. In R. D. Luce, M. D'Zmura, D. Hoffman, et al. (Eds.), Geometric representations of perceptual phenomena (pp. 295-318). Mahwah, NJ: Erlbaum.
    • (1995) Geometric Representations of Perceptual Phenomena , pp. 295-318
    • Carroll, J.D.1    Chaturvedi, A.2
  • 35
    • 33745212964 scopus 로고    scopus 로고
    • K-midranges clustering
    • A. Rizzi, M. Vichi, & H. H. Bock (Eds.). Berlin: Springer
    • Carroll, J. D., & Chaturvedi, A. (1998). K-midranges clustering. In A. Rizzi, M. Vichi, & H. H. Bock (Eds.), Advances in data science and classification (pp. 3-14). Berlin: Springer.
    • (1998) Advances in Data Science and Classification , pp. 3-14
    • Carroll, J.D.1    Chaturvedi, A.2
  • 37
    • 0030351528 scopus 로고    scopus 로고
    • An entropy criterion for assessing the number of clusters in a mixture model
    • Celeux, G., & Soromenho, G. (1996). An entropy criterion for assessing the number of clusters in a mixture model. Journal of Classification, 13, 195-212.
    • (1996) Journal of Classification , vol.13 , pp. 195-212
    • Celeux, G.1    Soromenho, G.2
  • 38
    • 33745212734 scopus 로고    scopus 로고
    • A new method for detecting influential observations in nonhierarchical cluster analysis
    • A. Rizzi, M. Vichi, & H. H. Bock (Eds.). Berlin: Springer
    • Cerioli, A. (1998). A new method for detecting influential observations in nonhierarchical cluster analysis. In A. Rizzi, M. Vichi, & H. H. Bock (Eds.), Advances in data science and classification (pp. 15-20). Berlin: Springer.
    • (1998) Advances in Data Science and Classification , pp. 15-20
    • Cerioli, A.1
  • 39
    • 33745203567 scopus 로고    scopus 로고
    • Exploratory methods for detecting high density regions in cluster analysis
    • S. Borra, R. Rocci, M. Vichi & M. Schader (Eds.). Berlin: Springer
    • Cerioli, A., & Zani, S. (2001). Exploratory methods for detecting high density regions in cluster analysis. In S. Borra, R. Rocci, M. Vichi & M. Schader (Eds.), Advances in classification and data analysis (pp. 11-18). Berlin: Springer.
    • (2001) Advances in Classification and Data Analysis , pp. 11-18
    • Cerioli, A.1    Zani, S.2
  • 40
    • 0020998698 scopus 로고
    • On using principal components before separating a mixture of two multivariate normal distributions
    • Chang, W. C. (1983). On using principal components before separating a mixture of two multivariate normal distributions. Applied Statistics, 32, 267-275.
    • (1983) Applied Statistics , vol.32 , pp. 267-275
    • Chang, W.C.1
  • 41
    • 85108017051 scopus 로고    scopus 로고
    • A feature based approach to market segmentation via overlapping K-centroids clustering
    • Chaturvedi, A. D., Carroll, J. D., Green, P., & Rotondo, J. A. (1997). A feature based approach to market segmentation via overlapping K-centroids clustering. Journal of Marketing Research, 34, 370-377.
    • (1997) Journal of Marketing Research , vol.34 , pp. 370-377
    • Chaturvedi, A.D.1    Carroll, J.D.2    Green, P.3    Rotondo, J.A.4
  • 44
    • 0030376226 scopus 로고    scopus 로고
    • Measuring the influence of individual data points in cluster analysis
    • Cheng, R., & Milligan, G. W. (1996b). Measuring the influence of individual data points in cluster analysis. Journal of Classification, 13, 315-335.
    • (1996) Journal of Classification , vol.13 , pp. 315-335
    • Cheng, R.1    Milligan, G.W.2
  • 45
    • 0002937787 scopus 로고
    • M-dimensional location models: Application to cluster analysis
    • Cooper, L. (1973). M-dimensional location models: Application to cluster analysis. Journal of Regional Science, 13, 41-54.
    • (1973) Journal of Regional Science , vol.13 , pp. 41-54
    • Cooper, L.1
  • 51
    • 0001381164 scopus 로고
    • Estimating the components of a mixture of normal distributions
    • Day, N. E. (1969). Estimating the components of a mixture of normal distributions. Biometrika, 56, 463-474.
    • (1969) Biometrika , vol.56 , pp. 463-474
    • Day, N.E.1
  • 52
    • 0033220731 scopus 로고    scopus 로고
    • A competitive elliptical clustering algorithm
    • De Backer, S., & Scheunders, P. (1999). A competitive elliptical clustering algorithm. Pattern Recognition Letters, 20, 1141-1147.
    • (1999) Pattern Recognition Letters , vol.20 , pp. 1141-1147
    • De Backer, S.1    Scheunders, P.2
  • 53
    • 33947177850 scopus 로고
    • Optimal variable weighting for ultrametric and additive tree clustering
    • De Soete, G. (1986). Optimal variable weighting for ultrametric and additive tree clustering. Quality and Quantity, 20, 169-180.
    • (1986) Quality and Quantity , vol.20 , pp. 169-180
    • De Soete, G.1
  • 54
    • 0000962917 scopus 로고
    • OVWTRE: A program for optimal variable weighting for ultrametric and additive tree fitting
    • De Soete, G. (1988). OVWTRE: A program for optimal variable weighting for ultrametric and additive tree fitting. Journal of Classification, 5, 101-104.
    • (1988) Journal of Classification , vol.5 , pp. 101-104
    • De Soete, G.1
  • 55
    • 0004408560 scopus 로고
    • K-means clustering in a low-dimensional Euclidean space
    • E. Diday, Y. Lechevallier, M. Schader, et al. (Eds.). Berlin: Springer
    • De Soete, G., & Carroll, J. D. (1994). K-means clustering in a low-dimensional Euclidean space. In E. Diday, Y. Lechevallier, M. Schader, et al. (Eds.), New approaches in classification and data analysis (pp. 212-219). Berlin: Springer.
    • (1994) New Approaches in Classification and Data Analysis , pp. 212-219
    • De Soete, G.1    Carroll, J.D.2
  • 57
    • 0002414638 scopus 로고
    • Synthesized clustering: A method for amalgamating alternative clustering bases with differential weighting of variables
    • DeSarbo, W. S., Carroll, J. D., Clark, L. A., & Green, P. E. (1984). Synthesized clustering: A method for amalgamating alternative clustering bases with differential weighting of variables. Psychometrika, 49, 57-78.
    • (1984) Psychometrika , vol.49 , pp. 57-78
    • Desarbo, W.S.1    Carroll, J.D.2    Clark, L.A.3    Green, P.E.4
  • 58
    • 0000727780 scopus 로고
    • Constrained classification: The use of a priori information in cluster analysis
    • DeSarbo, W. S., & Mahajan, V. (1984). Constrained classification: The use of a priori information in cluster analysis. Psychometrika, 49, 187-215.
    • (1984) Psychometrika , vol.49 , pp. 187-215
    • DeSarbo, W.S.1    Mahajan, V.2
  • 59
    • 0038879572 scopus 로고
    • Maximum likelihood estimation for mixtures of two normal distributions
    • Dick, N. P., & Bowden, D. C. (1973). Maximum likelihood estimation for mixtures of two normal distributions. Biometrics, 29, 781-790.
    • (1973) Biometrics , vol.29 , pp. 781-790
    • Dick, N.P.1    Bowden, D.C.2
  • 60
    • 33745204252 scopus 로고
    • (April). Paper presented at the National Meetings of The Classification Society, Atlanta, Georgia
    • Diehr, G. (1973, April). Minimum variance partitions and mathematical programming. Paper presented at the National Meetings of The Classification Society, Atlanta, Georgia.
    • (1973) Minimum Variance Partitions and Mathematical Programming
    • Diehr, G.1
  • 61
    • 0001326106 scopus 로고
    • On the use of component scores in the presence of group structure
    • Dillon, W. R., Mulani, N., & Frederick, D. G. (1989). On the use of component scores in the presence of group structure. Journal of Consumer Research, 16, 106-112.
    • (1989) Journal of Consumer Research , vol.16 , pp. 106-112
    • Dillon, W.R.1    Mulani, N.2    Frederick, D.G.3
  • 62
    • 0036011451 scopus 로고    scopus 로고
    • An examination of indices for determining the number of clusters in binary data sets
    • Dimitriadou, E., Dolničar, S., & Weingessel, A. (2002). An examination of indices for determining the number of clusters in binary data sets. Psychometrika, 67, 137-160.
    • (2002) Psychometrika , vol.67 , pp. 137-160
    • Dimitriadou, E.1    Dolničar, S.2    Weingessel, A.3
  • 63
    • 0004763950 scopus 로고
    • Complexity relaxation of dynamic programming for cluster analysis
    • E. Diday, Y. Lechevallier, M. Schader, et al. (Eds.). Berlin: Springer
    • Dodge, Y., & Gafner, T. (1994). Complexity relaxation of dynamic programming for cluster analysis. In E. Diday, Y. Lechevallier, M. Schader, et al. (Eds.), New approaches in classification and data analysis (pp. 220-227). Berlin: Springer.
    • (1994) New Approaches in Classification and Data Analysis , pp. 220-227
    • Dodge, Y.1    Gafner, T.2
  • 64
    • 21844523554 scopus 로고
    • Univariate screening measures for cluster analysis
    • Donoghue, J. R. (1995). Univariate screening measures for cluster analysis. Multivariate Behavioral Research, 30, 385-427.
    • (1995) Multivariate Behavioral Research , vol.30 , pp. 385-427
    • Donoghue, J.R.1
  • 65
    • 0017010058 scopus 로고
    • Clustering techniques: The user's dilemma
    • Dubes, R., & Jain, A. K. (1976). Clustering techniques: The user's dilemma. Pattern Recognition, 8, 247-260.
    • (1976) Pattern Recognition , vol.8 , pp. 247-260
    • Dubes, R.1    Jain, A.K.2
  • 67
    • 0015644825 scopus 로고
    • A fuzzy relative of the ISODATA process and its use in detecting compact well separated clusters
    • Dunn, J. C. (1974). A fuzzy relative of the ISODATA process and its use in detecting compact well separated clusters. Journal of Cybernetics, 3, 32-57.
    • (1974) Journal of Cybernetics , vol.3 , pp. 32-57
    • Dunn, J.C.1
  • 69
    • 0014749505 scopus 로고
    • Bounds on the performance of optimum quantizers
    • Elias, P. (1970). Bounds on the performance of optimum quantizers. IEEE Transactions on Information Theory, 16, 172-184.
    • (1970) IEEE Transactions on Information Theory , vol.16 , pp. 172-184
    • Elias, P.1
  • 71
    • 0344700024 scopus 로고
    • Cluster analysis
    • C. A. O'Muircheartaigh & C. Payne (Eds.). New York: Wiley
    • Everitt, B. S. (1977). Cluster analysis. In C. A. O'Muircheartaigh & C. Payne (Eds.), Exploring data structures (Vol. 1, pp. 63-88). New York: Wiley.
    • (1977) Exploring Data Structures , vol.1 , pp. 63-88
    • Everitt, B.S.1
  • 72
    • 0018332017 scopus 로고
    • Unresolved problems in cluster analysis
    • Everitt, B. S. (1979). Unresolved problems in cluster analysis. Biometrics, 35, 169-181.
    • (1979) Biometrics , vol.35 , pp. 169-181
    • Everitt, B.S.1
  • 73
    • 0015138786 scopus 로고
    • An attempt at validation of traditional psychiatric syndromes by cluster analysis
    • Everitt, B. S., Gourlay, A. J., & Kendall, R. E. (1971). An attempt at validation of traditional psychiatric syndromes by cluster analysis. British Journal of Psychiatry, 119, 399-412.
    • (1971) British Journal of Psychiatry , vol.119 , pp. 399-412
    • Everitt, B.S.1    Gourlay, A.J.2    Kendall, R.E.3
  • 74
    • 0001218972 scopus 로고
    • Clustering and the continuous K-means algorithm
    • Faber, V. (1994). Clustering and the continuous K-means algorithm. Los Alamos Science, 22, 138-144.
    • (1994) Los Alamos Science , vol.22 , pp. 138-144
    • Faber, V.1
  • 75
    • 33745221934 scopus 로고    scopus 로고
    • (June). Paper presented at the 2001 International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences, Las Vegas, Nevada
    • Falkenauer, E., & Marchand, A. (2001, June). Using K-Means? Consider ArrayMiner. Paper presented at the 2001 International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences, Las Vegas, Nevada.
    • (2001) Using K-Means? Consider ArrayMiner
    • Falkenauer, E.1    Marchand, A.2
  • 76
    • 0001925540 scopus 로고
    • Admissible clustering procedures
    • Fisher, L., & Van Ness, J. W. (1971). Admissible clustering procedures. Biometrika, 58, 91-104.
    • (1971) Biometrika , vol.58 , pp. 91-104
    • Fisher, L.1    Van Ness, J.W.2
  • 79
    • 78751701140 scopus 로고
    • Principal points
    • Flury, B. A. (1990). Principal points. Biometrika, 77, 33-41.
    • (1990) Biometrika , vol.77 , pp. 33-41
    • Flury, B.A.1
  • 80
    • 0000014486 scopus 로고
    • Cluster analysis of multivariate data: Efficiency versus interpretability of classifications
    • Forgy, E. W. (1965). Cluster analysis of multivariate data: Efficiency versus interpretability of classifications. Biometrics, 21, 768-769.
    • (1965) Biometrics , vol.21 , pp. 768-769
    • Forgy, E.W.1
  • 82
  • 85
    • 33745188532 scopus 로고
    • On a modification of the K-means clustering procedure
    • E. Diday (Ed.). Amsterdam: North-Holland
    • Gaenssler, P. (1988). On a modification of the K-means clustering procedure. In E. Diday (Ed.), Data analysis and informatics V (pp. 365-371). Amsterdam: North-Holland.
    • (1988) Data Analysis and Informatics , vol.5 , pp. 365-371
    • Gaenssler, P.1
  • 88
    • 0033248629 scopus 로고    scopus 로고
    • A central limit theorem for multivariate generalized trimmed K-means
    • Garcia-Escudero, L. A., Gordaliza, A., & Matran, C. (1999b). A central limit theorem for multivariate generalized trimmed K-means. Annals of Statistics, 27, 1061-1079.
    • (1999) Annals of Statistics , vol.27 , pp. 1061-1079
    • Garcia-Escudero, L.A.1    Gordaliza, A.2    Matran, C.3
  • 91
    • 0442314672 scopus 로고    scopus 로고
    • A comparison of traditional segmentation methods with segmentation based upon artificial neural networks by means of conjoint data from a Monte Carlo simulation
    • I. Balderjahn, R. Mathar, & M. Schader (Eds.). Berlin: Springer
    • Gierl, H., & Schwanenberg, S. (1998). A comparison of traditional segmentation methods with segmentation based upon artificial neural networks by means of conjoint data from a Monte Carlo simulation. In I. Balderjahn, R. Mathar, & M. Schader (Eds.), Classification, data analysis, and data highways (pp. 386-392). Berlin: Springer.
    • (1998) Classification, Data Analysis, and Data Highways , pp. 386-392
    • Gierl, H.1    Schwanenberg, S.2
  • 92
    • 0014818322 scopus 로고
    • An algorithm for detecting unimodal fuzzy sets and its application as a clustering technique
    • Gitman, I., & Levine, M. D. (1970). An algorithm for detecting unimodal fuzzy sets and its application as a clustering technique. IEEE Transactions on Computers, 19, 583-593.
    • (1970) IEEE Transactions on Computers , vol.19 , pp. 583-593
    • Gitman, I.1    Levine, M.D.2
  • 95
    • 0040435325 scopus 로고
    • Classification in the presence of constraints
    • Gordon, A. D. (1973). Classification in the presence of constraints. Biometrics, 29, 821-827.
    • (1973) Biometrics , vol.29 , pp. 821-827
    • Gordon, A.D.1
  • 97
    • 0017402076 scopus 로고
    • An algorithm for Euclidean sum of squares classification
    • Gordon, A. D., & Henderson, J. J. (1977). An algorithm for Euclidean sum of squares classification. Biometrics, 33, 355-362.
    • (1977) Biometrics , vol.33 , pp. 355-362
    • Gordon, A.D.1    Henderson, J.J.2
  • 99
    • 0001886818 scopus 로고
    • Generalized procrustes analysis
    • Gower, J. C. (1975). Generalized Procrustes analysis. Psychometrika, 40, 33-51.
    • (1975) Psychometrika , vol.40 , pp. 33-51
    • Gower, J.C.1
  • 100
    • 0000710590 scopus 로고
    • A preliminary study of optimal variable weighting in K-means clustering
    • Green, P. E., Carmone, F J., & Kim, J. (1990). A preliminary study of optimal variable weighting in K-means clustering. Journal of Classification, 7, 271-285.
    • (1990) Journal of Classification , vol.7 , pp. 271-285
    • Green, P.E.1    Carmone, F.J.2    Kim, J.3
  • 101
    • 21844481226 scopus 로고
    • Alternative approaches to cluster-based market segmentation
    • Green, P. E., & Krieger, A. M. (1995). Alternative approaches to cluster-based market segmentation. Journal of the Market Research Society, 37, 221-239.
    • (1995) Journal of the Market Research Society , vol.37 , pp. 221-239
    • Green, P.E.1    Krieger, A.M.2
  • 102
    • 33745214269 scopus 로고    scopus 로고
    • The effects of initial values and the covariance structure on the recovery of some clustering methods
    • H. A. L. Kiers, J. -P. Rasson, P. J. F. Groenen, & M. Schader (Eds.). Berlin: Springer
    • Hajnal, I., & Loosveldt, G. (2000). The effects of initial values and the covariance structure on the recovery of some clustering methods. In H. A. L. Kiers, J. -P. Rasson, P. J. F. Groenen, & M. Schader (Eds.), Data analysis, classification, and related methods (pp. 47-52). Berlin: Springer.
    • (2000) Data Analysis, Classification, and Related Methods , pp. 47-52
    • Hajnal, I.1    Loosveldt, G.2
  • 103
    • 0012580978 scopus 로고    scopus 로고
    • (Tech. Rep. CS2002-0716). La Jolla, CA: University of California at San Diego
    • Hamerly, G., & Elkan, C. (2002). Learning the K in K-means (Tech. Rep. CS2002-0716). La Jolla, CA: University of California at San Diego.
    • (2002) Learning the K in K-means
    • Hamerly, G.1    Elkan, C.2
  • 104
    • 0032395795 scopus 로고    scopus 로고
    • Minimum sum of squares clustering in a low dimensional space
    • Hansen, P., Jaumard, B., & Mladenovic, N. (1998). Minimum sum of squares clustering in a low dimensional space. Journal of Classification, 15, 37-55.
    • (1998) Journal of Classification , vol.15 , pp. 37-55
    • Hansen, P.1    Jaumard, B.2    Mladenovic, N.3
  • 106
    • 0000637050 scopus 로고
    • Asymptotic distributions for clustering criteria
    • Hartigan, J. A. (1978). Asymptotic distributions for clustering criteria. Annals of Statistics, 6, 117-131.
    • (1978) Annals of Statistics , vol.6 , pp. 117-131
    • Hartigan, J.A.1
  • 107
    • 33748888529 scopus 로고
    • Statistical theory in clustering
    • Hartigan, J. A. (1985). Statistical theory in clustering. Journal of Classification, 2, 63-76.
    • (1985) Journal of Classification , vol.2 , pp. 63-76
    • Hartigan, J.A.1
  • 108
    • 0001138328 scopus 로고
    • Algorithm AS 136: A k-means clustering algorithm
    • Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm. Applied Statistics, 28, 100-108.
    • (1979) Applied Statistics , vol.28 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 110
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the K-means algorithm for clustering large data sets with categorical values
    • Huang, Z. (1998). Extensions to the K-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery, 2, 283-304.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 283-304
    • Huang, Z.1
  • 111
    • 0742288813 scopus 로고    scopus 로고
    • A note on K-modes clustering
    • Huang, Z., & Ng, M. K. (2003). A note on K-modes clustering. Journal of Classification, 20, 257-261.
    • (2003) Journal of Classification , vol.20 , pp. 257-261
    • Huang, Z.1    Ng, M.K.2
  • 112
    • 0031508490 scopus 로고    scopus 로고
    • Cluster differences scaling with a within-clusters loss component and a fuzzy successive approximation strategy to avoid local minima
    • Heiser, W. J., & Groenen, P. J. F. (1997). Cluster differences scaling with a within-clusters loss component and a fuzzy successive approximation strategy to avoid local minima. Psychometrika, 62, 63-83.
    • (1997) Psychometrika , vol.62 , pp. 63-83
    • Heiser, W.J.1    Groenen, P.J.F.2
  • 114
    • 33745198045 scopus 로고    scopus 로고
    • (June). Invited talk presented at the North American Classification Society, Madison, WI
    • Hubert, L. J. (2002, June). John van Ryzin's life and work. Invited talk presented at the North American Classification Society, Madison, WI.
    • (2002) John Van Ryzin's Life and Work
    • Hubert, L.J.1
  • 117
    • 0001518855 scopus 로고
    • A general statistical framework for assessing categorical clustering in free recall
    • Hubert, L. J., & Levin, J. R. (1976). A general statistical framework for assessing categorical clustering in free recall. Psychological Bulletin, 83, 1072-1080.
    • (1976) Psychological Bulletin , vol.83 , pp. 1072-1080
    • Hubert, L.J.1    Levin, J.R.2
  • 119
    • 0023491749 scopus 로고
    • Bootstrap technique in cluster analysis
    • Jain, A. K., & Moreau, J. V. (1987). Bootstrap technique in cluster analysis. Pattern Recognition, 20, 547-568.
    • (1987) Pattern Recognition , vol.20 , pp. 547-568
    • Jain, A.K.1    Moreau, J.V.2
  • 120
    • 0000784896 scopus 로고
    • A dynamic programming algorithm for cluster analysis
    • Jensen, R. E. (1969). A dynamic programming algorithm for cluster analysis. Operations Research, 17, 1034-1057.
    • (1969) Operations Research , vol.17 , pp. 1034-1057
    • Jensen, R.E.1
  • 126
    • 27944462549 scopus 로고
    • A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion
    • Kass, R. E., & Wasserman, L. (1995). A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion. Journal of the American Statistical Association, 90, 928-934.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 928-934
    • Kass, R.E.1    Wasserman, L.2
  • 127
    • 0000928401 scopus 로고    scopus 로고
    • Discrimination by means of components that are orthogonal in the data space
    • Kiers, H. A. L. (1997). Discrimination by means of components that are orthogonal in the data space. Journal of Chemometrics, 11, 533-545.
    • (1997) Journal of Chemometrics , vol.11 , pp. 533-545
    • Kiers, H.A.L.1
  • 128
    • 33745187644 scopus 로고
    • Clustering algorithms for the within-class scatter criterion with a restricte d number of elements per cluster
    • W. Gaul & M. Schader (Eds.). Amsterdam: North-Holland
    • Körkel, M. (1986). Clustering algorithms for the within-class scatter criterion with a restricte d number of elements per cluster. In W. Gaul & M. Schader (Eds.), Classification as a tool for research (pp. 241-247). Amsterdam: North-Holland.
    • (1986) Classification as a Tool for Research , pp. 241-247
    • Körkel, M.1
  • 129
    • 0023905024 scopus 로고
    • A criterion for determining the number of groups in a data set using sum-of-squares clustering
    • Krzanowski, W. J., & Lai, Y. T. (1988). A criterion for determining the number of groups in a data set using sum-of-squares clustering. Biometrics, 44, 23-34.
    • (1988) Biometrics , vol.44 , pp. 23-34
    • Krzanowski, W.J.1    Lai, Y.T.2
  • 132
    • 0036487280 scopus 로고    scopus 로고
    • The global K-means clustering algorithm
    • Likas, A., Vlassis, N., & Verbeek, J. (2003). The global K-means clustering algorithm. Pattern Recognition, 36, 451-461.
    • (2003) Pattern Recognition , vol.36 , pp. 451-461
    • Likas, A.1    Vlassis, N.2    Verbeek, J.3
  • 133
    • 0001457509 scopus 로고
    • Some methods of classification and analysis of multivariate observations
    • L. M. Le Cam & J. Neyman (Eds.). Berkeley, CA: University of California Press
    • MacQueen, J. (1967). Some methods of classification and analysis of multivariate observations. In L. M. Le Cam & J. Neyman (Eds.), Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (Vol. 1, pp. 281-297). Berkeley, CA: University of California Press.
    • (1967) Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability , vol.1 , pp. 281-297
    • MacQueen, J.1
  • 134
    • 0035420381 scopus 로고    scopus 로고
    • Clustering massive datasets with applications in software metrics and tomography
    • Maitra, R. (2001). Clustering massive datasets with applications in software metrics and tomography. Technometrics, 43, 336-346.
    • (2001) Technometrics , vol.43 , pp. 336-346
    • Maitra, R.1
  • 135
    • 0035619721 scopus 로고    scopus 로고
    • Optimal variable weighting for ultrametric and additive trees and K-means partitioning: Methods and software
    • Makarenkov, V., & Legendre, P. (2001). Optimal variable weighting for ultrametric and additive trees and K-means partitioning: Methods and software. Journal of Classification, 18, 245-271.
    • (2001) Journal of Classification , vol.18 , pp. 245-271
    • Makarenkov, V.1    Legendre, P.2
  • 136
    • 2942611661 scopus 로고
    • Measures of multivariate skewness and kurtosis with applications
    • Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57, 519-530.
    • (1970) Biometrika , vol.57 , pp. 519-530
    • Mardia, K.V.1
  • 137
    • 0000904196 scopus 로고
    • Applications of some measures of multivariate skewness and kurtosis for testing normality and robustness studies
    • Mardia, K. V. (1974). Applications of some measures of multivariate skewness and kurtosis for testing normality and robustness studies. Sankhyā B, 36, 115-128.
    • (1974) Sankhyā B , vol.36 , pp. 115-128
    • Mardia, K.V.1
  • 140
    • 0016203667 scopus 로고
    • Multivariate clustering procedures with variable metrics
    • Maronna, R., & Jacovkis, P. M. (1974). Multivariate clustering procedures with variable metrics. Biometrics, 30, 499-505.
    • (1974) Biometrics , vol.30 , pp. 499-505
    • Maronna, R.1    Jacovkis, P.M.2
  • 141
    • 0015113659 scopus 로고
    • Practical problems in a method of cluster analysis
    • Marriott, F. H. C. (1971). Practical problems in a method of cluster analysis. Biometrics, 27, 501-514.
    • (1971) Biometrics , vol.27 , pp. 501-514
    • Marriott, F.H.C.1
  • 145
    • 5644242386 scopus 로고
    • MIKCA: A FORTRAN IV iterative K-means cluster analysis program
    • McRae, D. J. (1971). MIKCA: A FORTRAN IV iterative K-means cluster analysis program. Behavioral Science, 16, 423-424.
    • (1971) Behavioral Science , vol.16 , pp. 423-424
    • McRae, D.J.1
  • 146
    • 0017810723 scopus 로고
    • Evaluating clustering methods for psychiatric diagnosis
    • Mezzich, J. E. (1978). Evaluating clustering methods for psychiatric diagnosis. Biological Psychiatry, 13, 265-281.
    • (1978) Biological Psychiatry , vol.13 , pp. 265-281
    • Mezzich, J.E.1
  • 147
    • 33847457966 scopus 로고
    • An examination of the effect of six types of error perturbation on fifteen clustering algorithms
    • Milligan, G. W. (1980). An examination of the effect of six types of error perturbation on fifteen clustering algorithms. Psychometrika, 45, 325-342.
    • (1980) Psychometrika , vol.45 , pp. 325-342
    • Milligan, G.W.1
  • 148
    • 0000228352 scopus 로고
    • A Monte Carlo study of thirty internal criterion measures for cluster analysis
    • Milligan, G. W. (1981). A Monte Carlo study of thirty internal criterion measures for cluster analysis. Psychometrika, 46, 187-199.
    • (1981) Psychometrika , vol.46 , pp. 187-199
    • Milligan, G.W.1
  • 149
    • 0000272920 scopus 로고
    • An algorithm for generating artificial test clusters
    • Milligan, G. W. (1985). An algorithm for generating artificial test clusters. Psychometrika, 50, 123-127.
    • (1985) Psychometrika , vol.50 , pp. 123-127
    • Milligan, G.W.1
  • 150
    • 0002271592 scopus 로고    scopus 로고
    • Clustering validation: Results and implications for applied analysis
    • R Arabie, L. J. Hubert, & G. De Soete (Eds.). River Edge, NJ: World Scientific
    • Milligan, G. W. (1996). Clustering validation: Results and implications for applied analysis. In R Arabie, L. J. Hubert, & G. De Soete (Eds.), Clustering and classification (pp. 341-375). River Edge, NJ: World Scientific.
    • (1996) Clustering and Classification , pp. 341-375
    • Milligan, G.W.1
  • 151
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • Milligan, G. W., & Cooper, M. C. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50, 159-179.
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 153
    • 0000235019 scopus 로고
    • A study of standardization of variables in cluster analysis
    • Milligan, G. W, & Cooper, M. C. (1988). A study of standardization of variables in cluster analysis. Journal of Classification, 5, 181-204.
    • (1988) Journal of Classification , vol.5 , pp. 181-204
    • Milligan, G.W.1    Cooper, M.C.2
  • 154
    • 84965875255 scopus 로고
    • A two-stage clustering algorithm with robust recovery characteristics
    • Milligan, G. W., & Sokol, L. M. (1980). A two-stage clustering algorithm with robust recovery characteristics. Educational and Psychological Measurement, 40, 755-759.
    • (1980) Educational and Psychological Measurement , vol.40 , pp. 755-759
    • Milligan, G.W.1    Sokol, L.M.2
  • 155
    • 0001090009 scopus 로고
    • A sequential fitting procedure for linear data analysis models
    • Mirkin, B. G. (1990). A sequential fitting procedure for linear data analysis models. Journal of Classification, 7, 167-195.
    • (1990) Journal of Classification , vol.7 , pp. 167-195
    • Mirkin, B.G.1
  • 157
    • 84958809475 scopus 로고    scopus 로고
    • Mathematical classification and clustering: From how to what and why
    • I. Balderjahn, R. Mathar, & M. Schader (Eds.). Berlin: Springer
    • Mirkin, B. G. (1998). Mathematical classification and clustering: From how to what and why. In I. Balderjahn, R. Mathar, & M. Schader (Eds.), Classification, data analysis, and data highways (pp. 172-181). Berlin: Springer.
    • (1998) Classification, Data Analysis, and Data Highways , pp. 172-181
    • Mirkin, B.G.1
  • 158
    • 33745192343 scopus 로고    scopus 로고
    • Two principal points of symmetric distributions
    • A. Rizzi, M. Vichi, & H. H. Bock (Eds.). Berlin: Springer-Verlag
    • Mizuta, M. (1998). Two principal points of symmetric distributions. In A. Rizzi, M. Vichi, & H. H. Bock (Eds.), Advances in data science and classification (pp. 171-176). Berlin: Springer-Verlag.
    • (1998) Advances in Data Science and Classification , pp. 171-176
    • Mizuta, M.1
  • 160
    • 0003136237 scopus 로고
    • Efficient and effective clustering methods for spatial data mining
    • J. Bocca, M. Jarke, & C. Zaniolo (Eds.). San Francisco, CA: Morgan Kaufmann
    • Ng, R. T., & Man, J. (1994). Efficient and effective clustering methods for spatial data mining. In J. Bocca, M. Jarke, & C. Zaniolo (Eds.), Proceedings of the 20th international conference on very large databases (pp. 144-155). San Francisco, CA: Morgan Kaufmann.
    • (1994) Proceedings of the 20th International Conference on Very Large Databases , pp. 144-155
    • Ng, R.T.1    Man, J.2
  • 161
  • 162
    • 0001820920 scopus 로고    scopus 로고
    • X-means: Extending K-means with efficient estimation of the number of clusters
    • San Francisco: Morgan Kaufmann
    • Pelleg, D., & Moore, A. (2000). X-means: Extending K-means with efficient estimation of the number of clusters. In Proceedings of the seventeenth international conference on machine learning (pp. 727-734). San Francisco: Morgan Kaufmann.
    • (2000) Proceedings of the Seventeenth International Conference on Machine Learning , pp. 727-734
    • Pelleg, D.1    Moore, A.2
  • 163
    • 0000963889 scopus 로고
    • Strong consistency of K-means clustering
    • Pollard, D. (1981). Strong consistency of K-means clustering. Annals of Statistics, 9, 135-140.
    • (1981) Annals of Statistics , vol.9 , pp. 135-140
    • Pollard, D.1
  • 164
    • 0000963885 scopus 로고
    • A central limit theorem for K-means clustering
    • Pollard, D. (1982). A central limit theorem for K-means clustering. Annals of Probability, 10, 919-926.
    • (1982) Annals of Probability , vol.10 , pp. 919-926
    • Pollard, D.1
  • 166
    • 0000470917 scopus 로고
    • Cluster analysis in marketing research: Review and suggestions for application
    • Punj, G., & Stewart, D. W. (1983). Cluster analysis in marketing research: Review and suggestions for application. Journal of Marketing Research, 20, 134-148.
    • (1983) Journal of Marketing Research , vol.20 , pp. 134-148
    • Punj, G.1    Stewart, D.W.2
  • 167
    • 0001565436 scopus 로고
    • The utilization of multiple measurements in problems of biological classification
    • Rao, C. R. (1948). The utilization of multiple measurements in problems of biological classification. Journal of the Royal Statistical Association B, 10, 159-193.
    • (1948) Journal of the Royal Statistical Association B , vol.10 , pp. 159-193
    • Rao, C.R.1
  • 169
    • 0002892194 scopus 로고    scopus 로고
    • Determination of the number of clusters in K-means clustering and application in colour image segmentation
    • N. R. Pal, A. K. De & J. Das (Eds.). New Delhi: Narosa
    • Ray, S., & Turi, R. H. (2000). Determination of the number of clusters in K-means clustering and application in colour image segmentation. In N. R. Pal, A. K. De & J. Das (Eds.), Proceedings of the 4th International Conference on Advances in Pattern Recognition and Digital Techniques (pp. 137-143). New Delhi: Narosa.
    • (2000) Proceedings of the 4th International Conference on Advances in Pattern Recognition and Digital Techniques , pp. 137-143
    • Ray, S.1    Turi, R.H.2
  • 170
    • 84901276910 scopus 로고    scopus 로고
    • The FASTCLUS procedure
    • Cary, NC: SAS Institute
    • SAS. (2004). The FASTCLUS procedure. In SAS/STAT 9.1 user's guide, Volume 2. Cary, NC: SAS Institute.
    • (2004) SAS/STAT 9.1 User's Guide , vol.2
  • 171
    • 0030305550 scopus 로고    scopus 로고
    • An empirical comparison of variable standardization methods in cluster analysis
    • Schaffer, C. M., & Green, P. E. (1996). An empirical comparison of variable standardization methods in cluster analysis. Multivariate Behavioral Research, 31, 149-167.
    • (1996) Multivariate Behavioral Research , vol.31 , pp. 149-167
    • Schaffer, C.M.1    Green, P.E.2
  • 172
    • 3242820009 scopus 로고    scopus 로고
    • Cluster-based market segmentation: Some further comparisons of alternative approaches
    • Schaffer, C. M., & Green, P. E. (1998). Cluster-based market segmentation: Some further comparisons of alternative approaches. Journal of the Market Research Society, 40, 155-163.
    • (1998) Journal of the Market Research Society , vol.40 , pp. 155-163
    • Schaffer, C.M.1    Green, P.E.2
  • 173
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461-464.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 174
    • 0001340183 scopus 로고
    • Clustering methods based on likelihood ratio criteria
    • Scott, A. J., & Symons, M. J. (1971). Clustering methods based on likelihood ratio criteria. Biometrics, 27, 387-398.
    • (1971) Biometrics , vol.27 , pp. 387-398
    • Scott, A.J.1    Symons, M.J.2
  • 176
    • 0021202650 scopus 로고
    • K-means type algorithms: A generalized convergence theorem and characterization of local optimality
    • Selim, S. Z., & Ismail, M. A. (1984). K-means type algorithms: A generalized convergence theorem and characterization of local optimality. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 81-87.
    • (1984) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.6 , pp. 81-87
    • Selim, S.Z.1    Ismail, M.A.2
  • 177
    • 9444222978 scopus 로고
    • The application of computers in taxonomy
    • Sneath, P. H. A. (1957). The application of computers in taxonomy. Journal of General Microbiology, 17, 201-226.
    • (1957) Journal of General Microbiology , vol.17 , pp. 201-226
    • Sneath, P.H.A.1
  • 180
    • 4243505790 scopus 로고
    • Anti-clustering: Maximizing the variance criterion
    • Späth, H. (1986a). Anti-clustering: Maximizing the variance criterion. Control and Cybernetics, 15, 213-218.
    • (1986) Control and Cybernetics , vol.15 , pp. 213-218
    • Späth, H.1
  • 181
    • 33745224588 scopus 로고
    • Maximizing partitioning cluster criteria for quantitative data
    • Späth, H. (1986b). Maximizing partitioning cluster criteria for quantitative data. Studien zur Klassifikation, 17, 221-228.
    • (1986) Studien Zur Klassifikation , vol.17 , pp. 221-228
    • Späth, H.1
  • 183
    • 0142136684 scopus 로고    scopus 로고
    • K-means clustering: What you don't know may hurt you
    • Steinley, D. (2003). K-means clustering: What you don't know may hurt you. Psychological Methods, 8, 294-304.
    • (2003) Psychological Methods , vol.8 , pp. 294-304
    • Steinley, D.1
  • 184
    • 33744726077 scopus 로고    scopus 로고
    • Standardizing variables in K-means clustering
    • D. Banks, L. House, F. R. McMorris, P. Arabie, & W. Gaul (Eds.). New York: Springer
    • Steinley, D. (2004a). Standardizing variables in K-means clustering. In D. Banks, L. House, F. R. McMorris, P. Arabie, & W. Gaul (Eds.), Classification, clustering, and data mining applications (pp. 53-60). New York: Springer.
    • (2004) Classification, Clustering, and Data Mining Applications , pp. 53-60
    • Steinley, D.1
  • 185
    • 4344611435 scopus 로고    scopus 로고
    • Properties of the Hubert-Arabie adjusted Rand index
    • Steinley, D. (2004b). Properties of the Hubert-Arabie adjusted Rand index. Psychological Methods, 9, 386-396.
    • (2004) Psychological Methods , vol.9 , pp. 386-396
    • Steinley, D.1
  • 186
    • 0018604771 scopus 로고
    • Standardization of measures prior to cluster analysis
    • Stoddard, A. M. (1979). Standardization of measures prior to cluster analysis. Biometrics, 35, 765-773.
    • (1979) Biometrics , vol.35 , pp. 765-773
    • Stoddard, A.M.1
  • 187
    • 0001254122 scopus 로고
    • Asymptotics of K-means clustering based on projection pursuit
    • Stute, W., & Zhu, L. X. (1995). Asymptotics of K-means clustering based on projection pursuit. Sankhyā, 57, 462-471.
    • (1995) Sankhyā , vol.57 , pp. 462-471
    • Stute, W.1    Zhu, L.X.2
  • 189
    • 0002643871 scopus 로고
    • Clustering criteria and multivariate normal mixtures
    • Symons, M. J. (1981). Clustering criteria and multivariate normal mixtures. Biometrics, 37, 35-43.
    • (1981) Biometrics , vol.37 , pp. 35-43
    • Symons, M.J.1
  • 190
    • 21844516918 scopus 로고
    • Principal points and self-consistent points of elliptical distributions
    • Tarpey, T, Li, L., & Flury, B. D. (1995). Principal points and self-consistent points of elliptical distributions. Annals of Statistics, 23, 103-112.
    • (1995) Annals of Statistics , vol.23 , pp. 103-112
    • Tarpey, T.1    Li, L.2    Flury, B.D.3
  • 191
    • 0010063566 scopus 로고
    • Who belongs in the family?
    • Thorndike, R. L. (1953). Who belongs in the family? Psychometrika, 18, 267-276.
    • (1953) Psychometrika , vol.18 , pp. 267-276
    • Thorndike, R.L.1
  • 194
    • 0001543785 scopus 로고
    • Clustering N objects into K groups under optimal scaling of variables
    • Van Buuren, J., & Heiser, W. J. (1989). Clustering N objects into K groups under optimal scaling of variables. Psychometrika, 54, 699-706.
    • (1989) Psychometrika , vol.54 , pp. 699-706
    • Van Buuren, J.1    Heiser, W.J.2
  • 195
    • 85041932705 scopus 로고
    • Admissible clustering procedures II
    • Van Ness, J. W. (1973). Admissible clustering procedures II. Biometrika, 60, 422-424.
    • (1973) Biometrika , vol.60 , pp. 422-424
    • Van Ness, J.W.1
  • 197
    • 84942904298 scopus 로고    scopus 로고
    • Importance of individual variables in the k-means algorithm
    • D. Cheung, G. J. Williams, & Q. Li (Eds.). Berlin: Springer
    • Vesanto, J. (2001). Importance of individual variables in the k-means algorithm. In D. Cheung, G. J. Williams, & Q. Li (Eds.), Proceedings of the Pacific-Asia conference in knowledge discovery and data mining (pp. 513-518). Berlin: Springer.
    • (2001) Proceedings of the Pacific-Asia Conference in Knowledge Discovery and Data Mining , pp. 513-518
    • Vesanto, J.1
  • 201
    • 0032342923 scopus 로고    scopus 로고
    • A comparison of the classification capabilities of the 1-dimensional Kohonen neural network with two partitioning and three hierarchical cluster analysis algorithms
    • Waller, N. G., Kaiser, H. A., Illian, J. B., & Manry, M. (1998). A comparison of the classification capabilities of the 1-dimensional Kohonen neural network with two partitioning and three hierarchical cluster analysis algorithms. Psychometrika, 63, 5-22.
    • (1998) Psychometrika , vol.63 , pp. 5-22
    • Waller, N.G.1    Kaiser, H.A.2    Illian, J.B.3    Manry, M.4
  • 202
    • 84944178665 scopus 로고
    • Hierarchical grouping to optimize an objective function
    • Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236-244.
    • (1963) Journal of the American Statistical Association , vol.58 , pp. 236-244
    • Ward, J.H.1
  • 204
    • 0001403983 scopus 로고
    • Parameter modification for clustering criteria
    • Windham, M. P. (1987). Parameter modification for clustering criteria. Journal of Classification, 4, 191-214.
    • (1987) Journal of Classification , vol.4 , pp. 191-214
    • Windham, M.P.1
  • 206
    • 0012393308 scopus 로고
    • Pattern clustering by multivariate mixture analysis
    • Wolfe, J. H. (1970). Pattern clustering by multivariate mixture analysis. Multivariate Behavioral Research. 5, 329-350.
    • (1970) Multivariate Behavioral Research. , vol.5 , pp. 329-350
    • Wolfe, J.H.1
  • 207
    • 33745190797 scopus 로고
    • Asymptotic properties of univariate population K-means clusters
    • Wong, M. A. (1982a). Asymptotic properties of univariate population K-means clusters. Classification Society Bulletin, 5, 44-50.
    • (1982) Classification Society Bulletin , vol.5 , pp. 44-50
    • Wong, M.A.1
  • 208
    • 0000645837 scopus 로고
    • A hybrid clustering algorithm for identifying high density clusters
    • Wong, M. A. (1982b). A hybrid clustering algorithm for identifying high density clusters. Journal of the American Statistical Association, 77, 841-847.
    • (1982) Journal of the American Statistical Association , vol.77 , pp. 841-847
    • Wong, M.A.1
  • 209
    • 0001042639 scopus 로고
    • Asymptotic properties of univariate sample K-means clusters
    • Wong, M. A. (1984). Asymptotic properties of univariate sample K-means clusters. Journal of Classification, 1, 255-270.
    • (1984) Journal of Classification , vol.1 , pp. 255-270
    • Wong, M.A.1
  • 210
    • 0004776832 scopus 로고
    • A bootstrap testing procedure for investigating the number of subpopulations
    • Wong, M. A. (1985). A bootstrap testing procedure for investigating the number of subpopulations. Journal of Statistical Computation and Simulation, 22, 99-112.
    • (1985) Journal of Statistical Computation and Simulation , vol.22 , pp. 99-112
    • Wong, M.A.1
  • 214
    • 84862444046 scopus 로고    scopus 로고
    • (Hewlett Packard Technical Report, HPL-1999-124). Palo Alto, CA: Hewlett Packard Laboratories
    • Zhang, B., Hsu, M., & Dayal, U. (1999). K-harmonic means - a data clustering algorithm (Hewlett Packard Technical Report, HPL-1999-124). Palo Alto, CA: Hewlett Packard Laboratories.
    • (1999) K-harmonic Means - A Data Clustering Algorithm
    • Zhang, B.1    Hsu, M.2    Dayal, U.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.