메뉴 건너뛰기




Volumn 43, Issue 1, 2008, Pages 77-108

A new variable weighting and selection procedure for K-means cluster analysis

Author keywords

[No Author keywords available]

Indexed keywords


EID: 41149180750     PISSN: 00273171     EISSN: None     Source Type: Journal    
DOI: 10.1080/00273170701836695     Document Type: Article
Times cited : (71)

References (37)
  • 1
    • 0001941306 scopus 로고
    • Cluster analysis in marketing research
    • R. P. Bagozzi Ed, Oxford: Blackwell
    • Arabie, P., & Hubert, L. (1994). Cluster analysis in marketing research. In R. P. Bagozzi (Ed.), Advanced methods of marketing research (pp. 160-189). Oxford: Blackwell.
    • (1994) Advanced methods of marketing research , pp. 160-189
    • Arabie, P.1    Hubert, L.2
  • 3
    • 10844257374 scopus 로고    scopus 로고
    • Clustering binary data in the presence of masking variables
    • Brusco, M. J. (2004). Clustering binary data in the presence of masking variables. Psychological Methods, 9, 510-523.
    • (2004) Psychological Methods , vol.9 , pp. 510-523
    • Brusco, M.J.1
  • 4
    • 0035534927 scopus 로고    scopus 로고
    • A variable-selection heuristic for K-means clustering
    • Brusco, M. J., & Cradit, J. D. (2001). A variable-selection heuristic for K-means clustering. Psychometrika, 66, 249-270.
    • (2001) Psychometrika , vol.66 , pp. 249-270
    • Brusco, M.J.1    Cradit, J.D.2
  • 5
    • 38949174601 scopus 로고    scopus 로고
    • A comparison of heuristic procedures for minimum within-cluster sums of squares partitioning
    • in press
    • Brusco, M. J., & Steinley, D. (in press). A comparison of heuristic procedures for minimum within-cluster sums of squares partitioning. Psychometrika.
    • Psychometrika
    • Brusco, M.J.1    Steinley, D.2
  • 9
    • 0036011451 scopus 로고    scopus 로고
    • An examination of indexes for determining the number of clusters in binary data sets
    • Dimitriadou, E., Dolnicar, S., & Weingessel, A. (2002). An examination of indexes for determining the number of clusters in binary data sets. Psychometrika, 67, 137-160.
    • (2002) Psychometrika , vol.67 , pp. 137-160
    • Dimitriadou, E.1    Dolnicar, S.2    Weingessel, A.3
  • 10
    • 21844523554 scopus 로고
    • Univariate screening measures for cluster analysis
    • Donoghue, J. R. (1995). Univariate screening measures for cluster analysis. Multivariate Behavioral Research, 30, 385-427.
    • (1995) Multivariate Behavioral Research , vol.30 , pp. 385-427
    • Donoghue, J.R.1
  • 12
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, 179-188.
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 15
    • 0001457509 scopus 로고
    • Some methods of classification and analysis of multivariate observations
    • L. M. Le Cam & J. Neyman Eds, Berkeley: University of California Press
    • MacQueen, J. (1967). Some methods of classification and analysis of multivariate observations. In L. M. Le Cam & J. Neyman (Eds.), Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (Vol. 1, pp. 281-297). Berkeley: University of California Press.
    • (1967) Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability , vol.1 , pp. 281-297
    • MacQueen, J.1
  • 17
    • 33847457966 scopus 로고
    • An examination of the effect of six types of error perturbation on fifteen clustering algorithms
    • Milligan, G. W. (1980). An examination of the effect of six types of error perturbation on fifteen clustering algorithms. Psychometrika, 45, 325-342.
    • (1980) Psychometrika , vol.45 , pp. 325-342
    • Milligan, G.W.1
  • 18
    • 0000272920 scopus 로고
    • An algorithm for generating artificial test clusters
    • Milligan, G. W. (1985). An algorithm for generating artificial test clusters. Psychometrika, 50, 123-127.
    • (1985) Psychometrika , vol.50 , pp. 123-127
    • Milligan, G.W.1
  • 19
    • 0002048998 scopus 로고
    • A validation study of a variable-weighting algorithm for cluster analysis
    • Milligan, G. W. (1989). A validation study of a variable-weighting algorithm for cluster analysis. Journal of Classification, 6, 53-71.
    • (1989) Journal of Classification , vol.6 , pp. 53-71
    • Milligan, G.W.1
  • 20
    • 0002271592 scopus 로고    scopus 로고
    • Clustering validation, results and implications for applied analysis
    • P. Arabie, L. J. Hubert, & G. De Soete Eds, River Edge, NJ: World Scientific
    • Milligan, G. W. (1996). Clustering validation, results and implications for applied analysis. In P. Arabie, L. J. Hubert, & G. De Soete (Eds.), Clustering and classification (pp. 341-375). River Edge, NJ: World Scientific.
    • (1996) Clustering and classification , pp. 341-375
    • Milligan, G.W.1
  • 21
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • Milligan, G. W., & Cooper, M. C. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50, 159-179.
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 22
    • 84948872101 scopus 로고
    • A study of the comparability of external criteria for hierarchical cluster analysis
    • Milligan, G. W., & Cooper, M. C. (1986). A study of the comparability of external criteria for hierarchical cluster analysis. Multivariate Behavioral Research, 21, 441-458.
    • (1986) Multivariate Behavioral Research , vol.21 , pp. 441-458
    • Milligan, G.W.1    Cooper, M.C.2
  • 24
    • 84895337544 scopus 로고
    • Adaptive hierarchical clustering schemes
    • Rohlf, F. J. (1970). Adaptive hierarchical clustering schemes. Systematic Zoology, 19, 58-82.
    • (1970) Systematic Zoology , vol.19 , pp. 58-82
    • Rohlf, F.J.1
  • 26
    • 0142136684 scopus 로고    scopus 로고
    • K-means clustering: What you don't know may hurt you
    • Steinley, D. (2003). K-means clustering: What you don't know may hurt you. Psychological Methods, 8, 294-304.
    • (2003) Psychological Methods , vol.8 , pp. 294-304
    • Steinley, D.1
  • 27
    • 33744726077 scopus 로고    scopus 로고
    • Standardizing variables in K-means clustering
    • D. Banks, L. House, F. R. McMorris, P. Arabie, & W. Gaul Eds, New York: Springer
    • Steinley, D. (2004a). Standardizing variables in K-means clustering. In D. Banks, L. House, F. R. McMorris, P. Arabie, & W. Gaul (Eds.), Classification, clustering, and data mining applications (pp. 53-60). New York: Springer.
    • (2004) Classification, clustering, and data mining applications , pp. 53-60
    • Steinley, D.1
  • 28
    • 4344611435 scopus 로고    scopus 로고
    • Properties of the Hubert-Arabie adjusted Rand index
    • Steinley, D. (2004b). Properties of the Hubert-Arabie adjusted Rand index. Psychological Methods, 9, 386-396.
    • (2004) Psychological Methods , vol.9 , pp. 386-396
    • Steinley, D.1
  • 30
    • 33745700805 scopus 로고    scopus 로고
    • Profiling local optima in K-means clustering: Developing a diagnostic technique
    • Steinley, D. (2006b). Profiling local optima in K-means clustering: Developing a diagnostic technique. Psychological Methods, 11, 178-192.
    • (2006) Psychological Methods , vol.11 , pp. 178-192
    • Steinley, D.1
  • 31
    • 34250871625 scopus 로고    scopus 로고
    • Initializing K-means clustering: A critical analysis of several techniques
    • Steinley, D., & Brusco, M. J. (2007). Initializing K-means clustering: A critical analysis of several techniques. Journal of Classification, 24, 99-121.
    • (2007) Journal of Classification , vol.24 , pp. 99-121
    • Steinley, D.1    Brusco, M.J.2
  • 32
    • 33744720321 scopus 로고    scopus 로고
    • OCLUS: An analytic method for generating clusters with known overlap
    • Steinley, D., & Henson, R. (2005). OCLUS: An analytic method for generating clusters with known overlap. Journal of Classification, 22, 221-250.
    • (2005) Journal of Classification , vol.22 , pp. 221-250
    • Steinley, D.1    Henson, R.2
  • 33
    • 0018604771 scopus 로고
    • Standardization of measures prior to cluster analysis
    • Stoddard, A. M. (1979). Standardization of measures prior to cluster analysis. Biometrics, 35, 765-773.
    • (1979) Biometrics , vol.35 , pp. 765-773
    • Stoddard, A.M.1
  • 35
    • 84942904298 scopus 로고    scopus 로고
    • Importance of individual variables in the K-means algorithm
    • D. Cheung, G. J. Williams, & Q. Li Eds, Berlin: Springer
    • Vesanto, J. (2001). Importance of individual variables in the K-means algorithm. In D. Cheung, G. J. Williams, & Q. Li (Eds.), Proceedings of the Pacific-Asia Conference in Knowledge Discovery and Data Mining (pp. 513-518). Berlin: Springer.
    • (2001) Proceedings of the Pacific-Asia Conference in Knowledge Discovery and Data Mining , pp. 513-518
    • Vesanto, J.1
  • 36
    • 0033408148 scopus 로고    scopus 로고
    • A method for generating simulated plasmodes and artificial test clusters with user-defined shape, size, and orientation
    • Waller, N. G., Underhill, J. M., & Kaiser, H. A. (1999). A method for generating simulated plasmodes and artificial test clusters with user-defined shape, size, and orientation. Multivariate Behavioral Research, 34, 123-142.
    • (1999) Multivariate Behavioral Research , vol.34 , pp. 123-142
    • Waller, N.G.1    Underhill, J.M.2    Kaiser, H.A.3
  • 37
    • 84944178665 scopus 로고
    • Hierarchical grouping to optimize an objective function
    • Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236-244.
    • (1963) Journal of the American Statistical Association , vol.58 , pp. 236-244
    • Ward, J.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.