메뉴 건너뛰기




Volumn 9, Issue 3, 2004, Pages 386-396

Properties of the Hubert-Arabie adjusted Rand index

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; CLUSTER ANALYSIS; HUMAN; MATHEMATICAL COMPUTING; MONTE CARLO METHOD; REPRODUCIBILITY;

EID: 4344611435     PISSN: 1082989X     EISSN: None     Source Type: Journal    
DOI: 10.1037/1082-989X.9.3.386     Document Type: Article
Times cited : (561)

References (40)
  • 1
    • 21844522039 scopus 로고
    • A study of the classification capabilities of neural networks using unsupervised learning: A comparison with K-means clustering
    • Balakrishnan, P. V., Cooper, M. C., Jacob, V. S., & Lewis, P. A. (1994). A study of the classification capabilities of neural networks using unsupervised learning: A comparison with K-means clustering. Psychometrika, 59, 509-525.
    • (1994) Psychometrika , vol.59 , pp. 509-525
    • Balakrishnan, P.V.1    Cooper, M.C.2    Jacob, V.S.3    Lewis, P.A.4
  • 2
    • 85047669234 scopus 로고    scopus 로고
    • A comparison of maximum covariance and K-means cluster analysis in classifying cases into known taxon groups
    • Beauchaine, T. P., & Beauchaine, R. J., III. (2002). A comparison of maximum covariance and K-means cluster analysis in classifying cases into known taxon groups. Psychological Methods, 7, 245-261.
    • (2002) Psychological Methods , vol.7 , pp. 245-261
    • Beauchaine, T.P.1    Beauchaine III, R.J.2
  • 4
    • 0000642069 scopus 로고
    • Replicating cluster analysis: Method, consistency, and validity
    • Breckenridge, J. N. (1989). Replicating cluster analysis: Method, consistency, and validity. Multivariate Behavioral Research, 24, 147-161.
    • (1989) Multivariate Behavioral Research , vol.24 , pp. 147-161
    • Breckenridge, J.N.1
  • 5
    • 0035534927 scopus 로고    scopus 로고
    • A variable-selection heuristic for K-means clustering
    • Brusco, M. J., & Cradit, J. D. (2001). A variable-selection heuristic for K-means clustering. Psychometrika, 66, 249-270.
    • (2001) Psychometrika , vol.66 , pp. 249-270
    • Brusco, M.J.1    Cradit, J.D.2
  • 6
    • 0033229533 scopus 로고    scopus 로고
    • HINoV: A new model to improve market segment definition by identifying noisy variables
    • Carmone, F. J., Kara, A., & Maxwell, S. (1999). HINoV: A new model to improve market segment definition by identifying noisy variables. Journal of Marketing Research, 36, 501-509.
    • (1999) Journal of Marketing Research , vol.36 , pp. 501-509
    • Carmone, F.J.1    Kara, A.2    Maxwell, S.3
  • 7
    • 0030376226 scopus 로고    scopus 로고
    • Measuring the influence of individual data points in cluster analysis
    • Cheng, R., & Milligan, G. W. (1996). Measuring the influence of individual data points in cluster analysis. Journal of Classification, 13, 315-335.
    • (1996) Journal of Classification , vol.13 , pp. 315-335
    • Cheng, R.1    Milligan, G.W.2
  • 8
    • 21844523554 scopus 로고
    • Univariate screening measures for cluster analysis
    • Donoghue, J. R. (1995). Univariate screening measures for cluster analysis. Multivariate Behavioral Research, 30, 385-427.
    • (1995) Multivariate Behavioral Research , vol.30 , pp. 385-427
    • Donoghue, J.R.1
  • 10
    • 4344708708 scopus 로고
    • Clustering seven data sets by means of some or all of seven clustering methods
    • Dreger, R. M., Fuller, J., & Lemine, R. L. (1988). Clustering seven data sets by means of some or all of seven clustering methods. Multivariate Behavioral Research, 23, 203-230.
    • (1988) Multivariate Behavioral Research , vol.23 , pp. 203-230
    • Dreger, R.M.1    Fuller, J.2    Lemine, R.L.3
  • 11
    • 0023523514 scopus 로고
    • How many clusters are best? - An experiment
    • Dubes, R. C. (1987). How many clusters are best? - An experiment. Pattern Recognition, 20, 645-663.
    • (1987) Pattern Recognition , vol.20 , pp. 645-663
    • Dubes, R.C.1
  • 12
    • 0017010058 scopus 로고
    • Clustering techniques: The user's dilemma
    • Dubes, R., & Jain, A. K. (1976). Clustering techniques: The user's dilemma. Pattern Recognition, 8, 247-260.
    • (1976) Pattern Recognition , vol.8 , pp. 247-260
    • Dubes, R.1    Jain, A.K.2
  • 13
    • 0043263914 scopus 로고
    • The adjusted Rand statistic: A SAS macro
    • Fisher, D. G., & Hoffman, P. (1988). The adjusted Rand statistic: A SAS macro. Psychometrika, 53, 417-423.
    • (1988) Psychometrika , vol.53 , pp. 417-423
    • Fisher, D.G.1    Hoffman, P.2
  • 15
    • 0442314672 scopus 로고    scopus 로고
    • A comparison of traditional segmentation methods with segmentation based upon artifical neural networks by means of conjoint data from a Monte Carlo simulation
    • I. Balderjahn, R. Mathar, & M. Schader (Eds.). Berlin, Germany: Springer
    • Gierl, H., & Schwanenberg, S. (1998). A comparison of traditional segmentation methods with segmentation based upon artifical neural networks by means of conjoint data from a Monte Carlo simulation. In I. Balderjahn, R. Mathar, & M. Schader (Eds.), Classification, data analysis, and data highways (pp. 386-392). Berlin, Germany: Springer.
    • (1998) Classification, Data Analysis, and Data Highways , pp. 386-392
    • Gierl, H.1    Schwanenberg, S.2
  • 16
    • 84985841339 scopus 로고
    • A computational study of replicated clustering with an application to market segmentation
    • Helsen, K., & Green, P. E. (1991). A computational study of replicated clustering with an application to market segmentation. Decision Sciences, 22, 1124-1141.
    • (1991) Decision Sciences , vol.22 , pp. 1124-1141
    • Helsen, K.1    Green, P.E.2
  • 20
    • 0024475960 scopus 로고
    • Experiments in projection and clustering by simulated annealing
    • Klein, R. W., & Dubes, R. C. (1989). Experiments in projection and clustering by simulated annealing. Pattern Recognition, 22, 213-220.
    • (1989) Pattern Recognition , vol.22 , pp. 213-220
    • Klein, R.W.1    Dubes, R.C.2
  • 21
    • 0033444769 scopus 로고    scopus 로고
    • A generalized Rand-index method for consensus clustering of separate partitions of the same data base
    • Krieger, A. M., & Green, P. E. (1999). A generalized Rand-index method for consensus clustering of separate partitions of the same data base. Journal of Classification, 16, 63-89.
    • (1999) Journal of Classification , vol.16 , pp. 63-89
    • Krieger, A.M.1    Green, P.E.2
  • 22
    • 33847457966 scopus 로고
    • An examination of the effect of six types of error perturbation on fifteen clustering algorithms
    • Milligan, G. W. (1980). An examination of the effect of six types of error perturbation on fifteen clustering algorithms. Psychometrika, 45, 325-342.
    • (1980) Psychometrika , vol.45 , pp. 325-342
    • Milligan, G.W.1
  • 23
    • 0000227042 scopus 로고
    • A study of the beta-flexible clustering method
    • Milligan, G. W. (1989a). A study of the beta-flexible clustering method. Multivariate Behavioral Research, 24, 163-176.
    • (1989) Multivariate Behavioral Research , vol.24 , pp. 163-176
    • Milligan, G.W.1
  • 24
    • 0002048998 scopus 로고
    • A validation study of a variable weighting algorithm for cluster analysis
    • Milligan, G. W. (1989b). A validation study of a variable weighting algorithm for cluster analysis. Journal of Classification, 6, 53-71.
    • (1989) Journal of Classification , vol.6 , pp. 53-71
    • Milligan, G.W.1
  • 25
    • 0002271592 scopus 로고    scopus 로고
    • Clustering validation: Results and implications for applied analyses
    • P. Arabie, L. J. Hubert, & G. De Soete (Eds.). River Edge, NJ: World Scientific
    • Milligan, G. W. (1996). Clustering validation: Results and implications for applied analyses. In P. Arabie, L. J. Hubert, & G. De Soete (Eds.), Clustering and classification (pp. 341-375). River Edge, NJ: World Scientific.
    • (1996) Clustering and Classification , pp. 341-375
    • Milligan, G.W.1
  • 26
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • Milligan, G. W., & Cooper, M. C. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50, 159-179.
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 27
    • 84948872101 scopus 로고
    • A study of the comparability of external criteria for hierarchical cluster analysis
    • Milligan, G. W., & Cooper, M. C. (1986). A study of the comparability of external criteria for hierarchical cluster analysis. Multivariate Behavioral Research, 21, 441-458.
    • (1986) Multivariate Behavioral Research , vol.21 , pp. 441-458
    • Milligan, G.W.1    Cooper, M.C.2
  • 29
    • 0000235019 scopus 로고
    • A study of standardization of variables in cluster analysis
    • Milligan, G. W., & Cooper, M. C. (1988). A study of standardization of variables in cluster analysis. Journal of Classification, 5, 181-204.
    • (1988) Journal of Classification , vol.5 , pp. 181-204
    • Milligan, G.W.1    Cooper, M.C.2
  • 30
    • 0018910525 scopus 로고
    • The validation of four ultrametric clustering algorithms
    • Milligan, G. W., & Isaac, P. D. (1980). The validation of four ultrametric clustering algorithms. Pattern Recognition, 12, 41-50.
    • (1980) Pattern Recognition , vol.12 , pp. 41-50
    • Milligan, G.W.1    Isaac, P.D.2
  • 32
    • 84973745157 scopus 로고
    • The measurement of classification agreement: An adjustment to the Rand statistic for chance agreement
    • Morey, L., & Agresti, A. (1984). The measurement of classification agreement: An adjustment to the Rand statistic for chance agreement, Educational and Psychological Measurement, 44, 33-37.
    • (1984) Educational and Psychological Measurement , vol.44 , pp. 33-37
    • Morey, L.1    Agresti, A.2
  • 33
    • 84926272235 scopus 로고
    • A comparison of cluster analysis techniques within a sequential validation framework
    • Morey, L. C., Blashfield, R. K., & Skinner, H. A. (1983). A comparison of cluster analysis techniques within a sequential validation framework. Multivariate Behavioral Research, 18, 309-329.
    • (1983) Multivariate Behavioral Research , vol.18 , pp. 309-329
    • Morey, L.C.1    Blashfield, R.K.2    Skinner, H.A.3
  • 34
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66, 846-850.
    • (1971) Journal of the American Statistical Association , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 35
    • 0030544126 scopus 로고    scopus 로고
    • A computer program to calculate Hubert and Arabie's adjusted Rand index
    • Saltstone, R., & Stange, K. (1996). A computer program to calculate Hubert and Arabie's adjusted Rand index. Journal of Classification, 13, 169-172.
    • (1996) Journal of Classification , vol.13 , pp. 169-172
    • Saltstone, R.1    Stange, K.2
  • 36
    • 0346773308 scopus 로고
    • Monte Carlo tests of the accuracy of cluster analysis algorithms: A comparison of hierarchical and nonhierarchical methods
    • Scheiber, D., & Schneider, W. (1985). Monte Carlo tests of the accuracy of cluster analysis algorithms: A comparison of hierarchical and nonhierarchical methods. Multivariate Behavioral Research, 20, 283-304.
    • (1985) Multivariate Behavioral Research , vol.20 , pp. 283-304
    • Scheiber, D.1    Schneider, W.2
  • 37
    • 0142136684 scopus 로고    scopus 로고
    • Local optima in X-means clustering: What you don't know may hurt you
    • Steinley, D. (2003). Local optima in X-means clustering: What you don't know may hurt you. Psychological Methods, 8, 294-304.
    • (2003) Psychological Methods , vol.8 , pp. 294-304
    • Steinley, D.1
  • 39
    • 0032342923 scopus 로고    scopus 로고
    • A comparison of the classification capabilities of the 1-dimensional Kohonen neural network with two partitioning and three hierarchical cluster analysis algorithms
    • Waller, N. G., Kaiser, H. A., Illian, J. B., & Manry, M. (1998). A comparison of the classification capabilities of the 1-dimensional Kohonen neural network with two partitioning and three hierarchical cluster analysis algorithms. Psychometrika, 63, 5-22.
    • (1998) Psychometrika , vol.63 , pp. 5-22
    • Waller, N.G.1    Kaiser, H.A.2    Illian, J.B.3    Manry, M.4
  • 40
    • 0033408148 scopus 로고    scopus 로고
    • A method for generating simulated plasmodes and artificial test clusters with user-defined shape, size, and orientation
    • Waller, N., Underbill, J., & Kaiser, H. (1999). A method for generating simulated plasmodes and artificial test clusters with user-defined shape, size, and orientation. Multivariate Behavioral Research, 34, 123-142.
    • (1999) Multivariate Behavioral Research , vol.34 , pp. 123-142
    • Waller, N.1    Underbill, J.2    Kaiser, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.