-
1
-
-
21844522039
-
A study of the classification capabilities of neural networks using unsupervised learning: A comparison with K-means clustering
-
Balakrishnan, P. V., Cooper, M. C., Jacob, V. S., & Lewis, P. A. (1994). A study of the classification capabilities of neural networks using unsupervised learning: A comparison with K-means clustering. Psychometrika, 59, 509-525.
-
(1994)
Psychometrika
, vol.59
, pp. 509-525
-
-
Balakrishnan, P.V.1
Cooper, M.C.2
Jacob, V.S.3
Lewis, P.A.4
-
2
-
-
85047669234
-
A comparison of maximum covariance and K-means cluster analysis in classifying cases into known taxon groups
-
Beauchaine, T. P., & Beauchaine, R. J., III. (2002). A comparison of maximum covariance and K-means cluster analysis in classifying cases into known taxon groups. Psychological Methods, 7, 245-261.
-
(2002)
Psychological Methods
, vol.7
, pp. 245-261
-
-
Beauchaine, T.P.1
Beauchaine III, R.J.2
-
3
-
-
0001330155
-
A comparison of two approaches to beta-flexible clustering
-
Belbin, L., Faith, D. P., & Milligan, G. W. (1992). A comparison of two approaches to beta-flexible clustering. Multivariate Behavioral Research, 27, 417-433.
-
(1992)
Multivariate Behavioral Research
, vol.27
, pp. 417-433
-
-
Belbin, L.1
Faith, D.P.2
Milligan, G.W.3
-
4
-
-
0000642069
-
Replicating cluster analysis: Method, consistency, and validity
-
Breckenridge, J. N. (1989). Replicating cluster analysis: Method, consistency, and validity. Multivariate Behavioral Research, 24, 147-161.
-
(1989)
Multivariate Behavioral Research
, vol.24
, pp. 147-161
-
-
Breckenridge, J.N.1
-
5
-
-
0035534927
-
A variable-selection heuristic for K-means clustering
-
Brusco, M. J., & Cradit, J. D. (2001). A variable-selection heuristic for K-means clustering. Psychometrika, 66, 249-270.
-
(2001)
Psychometrika
, vol.66
, pp. 249-270
-
-
Brusco, M.J.1
Cradit, J.D.2
-
6
-
-
0033229533
-
HINoV: A new model to improve market segment definition by identifying noisy variables
-
Carmone, F. J., Kara, A., & Maxwell, S. (1999). HINoV: A new model to improve market segment definition by identifying noisy variables. Journal of Marketing Research, 36, 501-509.
-
(1999)
Journal of Marketing Research
, vol.36
, pp. 501-509
-
-
Carmone, F.J.1
Kara, A.2
Maxwell, S.3
-
7
-
-
0030376226
-
Measuring the influence of individual data points in cluster analysis
-
Cheng, R., & Milligan, G. W. (1996). Measuring the influence of individual data points in cluster analysis. Journal of Classification, 13, 315-335.
-
(1996)
Journal of Classification
, vol.13
, pp. 315-335
-
-
Cheng, R.1
Milligan, G.W.2
-
8
-
-
21844523554
-
Univariate screening measures for cluster analysis
-
Donoghue, J. R. (1995). Univariate screening measures for cluster analysis. Multivariate Behavioral Research, 30, 385-427.
-
(1995)
Multivariate Behavioral Research
, vol.30
, pp. 385-427
-
-
Donoghue, J.R.1
-
9
-
-
4344633582
-
-
June. Paper presented at the meeting of the Classification Society, Boulder, CO
-
Downton, M., & Brennan, T. (1980, June). Comparing classifications: An evaluation of several coefficients of partition agreement. Paper presented at the meeting of the Classification Society, Boulder, CO.
-
(1980)
Comparing Classifications: An Evaluation of Several Coefficients of Partition Agreement
-
-
Downton, M.1
Brennan, T.2
-
10
-
-
4344708708
-
Clustering seven data sets by means of some or all of seven clustering methods
-
Dreger, R. M., Fuller, J., & Lemine, R. L. (1988). Clustering seven data sets by means of some or all of seven clustering methods. Multivariate Behavioral Research, 23, 203-230.
-
(1988)
Multivariate Behavioral Research
, vol.23
, pp. 203-230
-
-
Dreger, R.M.1
Fuller, J.2
Lemine, R.L.3
-
11
-
-
0023523514
-
How many clusters are best? - An experiment
-
Dubes, R. C. (1987). How many clusters are best? - An experiment. Pattern Recognition, 20, 645-663.
-
(1987)
Pattern Recognition
, vol.20
, pp. 645-663
-
-
Dubes, R.C.1
-
12
-
-
0017010058
-
Clustering techniques: The user's dilemma
-
Dubes, R., & Jain, A. K. (1976). Clustering techniques: The user's dilemma. Pattern Recognition, 8, 247-260.
-
(1976)
Pattern Recognition
, vol.8
, pp. 247-260
-
-
Dubes, R.1
Jain, A.K.2
-
13
-
-
0043263914
-
The adjusted Rand statistic: A SAS macro
-
Fisher, D. G., & Hoffman, P. (1988). The adjusted Rand statistic: A SAS macro. Psychometrika, 53, 417-423.
-
(1988)
Psychometrika
, vol.53
, pp. 417-423
-
-
Fisher, D.G.1
Hoffman, P.2
-
15
-
-
0442314672
-
A comparison of traditional segmentation methods with segmentation based upon artifical neural networks by means of conjoint data from a Monte Carlo simulation
-
I. Balderjahn, R. Mathar, & M. Schader (Eds.). Berlin, Germany: Springer
-
Gierl, H., & Schwanenberg, S. (1998). A comparison of traditional segmentation methods with segmentation based upon artifical neural networks by means of conjoint data from a Monte Carlo simulation. In I. Balderjahn, R. Mathar, & M. Schader (Eds.), Classification, data analysis, and data highways (pp. 386-392). Berlin, Germany: Springer.
-
(1998)
Classification, Data Analysis, and Data Highways
, pp. 386-392
-
-
Gierl, H.1
Schwanenberg, S.2
-
16
-
-
84985841339
-
A computational study of replicated clustering with an application to market segmentation
-
Helsen, K., & Green, P. E. (1991). A computational study of replicated clustering with an application to market segmentation. Decision Sciences, 22, 1124-1141.
-
(1991)
Decision Sciences
, vol.22
, pp. 1124-1141
-
-
Helsen, K.1
Green, P.E.2
-
20
-
-
0024475960
-
Experiments in projection and clustering by simulated annealing
-
Klein, R. W., & Dubes, R. C. (1989). Experiments in projection and clustering by simulated annealing. Pattern Recognition, 22, 213-220.
-
(1989)
Pattern Recognition
, vol.22
, pp. 213-220
-
-
Klein, R.W.1
Dubes, R.C.2
-
21
-
-
0033444769
-
A generalized Rand-index method for consensus clustering of separate partitions of the same data base
-
Krieger, A. M., & Green, P. E. (1999). A generalized Rand-index method for consensus clustering of separate partitions of the same data base. Journal of Classification, 16, 63-89.
-
(1999)
Journal of Classification
, vol.16
, pp. 63-89
-
-
Krieger, A.M.1
Green, P.E.2
-
22
-
-
33847457966
-
An examination of the effect of six types of error perturbation on fifteen clustering algorithms
-
Milligan, G. W. (1980). An examination of the effect of six types of error perturbation on fifteen clustering algorithms. Psychometrika, 45, 325-342.
-
(1980)
Psychometrika
, vol.45
, pp. 325-342
-
-
Milligan, G.W.1
-
23
-
-
0000227042
-
A study of the beta-flexible clustering method
-
Milligan, G. W. (1989a). A study of the beta-flexible clustering method. Multivariate Behavioral Research, 24, 163-176.
-
(1989)
Multivariate Behavioral Research
, vol.24
, pp. 163-176
-
-
Milligan, G.W.1
-
24
-
-
0002048998
-
A validation study of a variable weighting algorithm for cluster analysis
-
Milligan, G. W. (1989b). A validation study of a variable weighting algorithm for cluster analysis. Journal of Classification, 6, 53-71.
-
(1989)
Journal of Classification
, vol.6
, pp. 53-71
-
-
Milligan, G.W.1
-
25
-
-
0002271592
-
Clustering validation: Results and implications for applied analyses
-
P. Arabie, L. J. Hubert, & G. De Soete (Eds.). River Edge, NJ: World Scientific
-
Milligan, G. W. (1996). Clustering validation: Results and implications for applied analyses. In P. Arabie, L. J. Hubert, & G. De Soete (Eds.), Clustering and classification (pp. 341-375). River Edge, NJ: World Scientific.
-
(1996)
Clustering and Classification
, pp. 341-375
-
-
Milligan, G.W.1
-
26
-
-
34250115918
-
An examination of procedures for determining the number of clusters in a data set
-
Milligan, G. W., & Cooper, M. C. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50, 159-179.
-
(1985)
Psychometrika
, vol.50
, pp. 159-179
-
-
Milligan, G.W.1
Cooper, M.C.2
-
27
-
-
84948872101
-
A study of the comparability of external criteria for hierarchical cluster analysis
-
Milligan, G. W., & Cooper, M. C. (1986). A study of the comparability of external criteria for hierarchical cluster analysis. Multivariate Behavioral Research, 21, 441-458.
-
(1986)
Multivariate Behavioral Research
, vol.21
, pp. 441-458
-
-
Milligan, G.W.1
Cooper, M.C.2
-
29
-
-
0000235019
-
A study of standardization of variables in cluster analysis
-
Milligan, G. W., & Cooper, M. C. (1988). A study of standardization of variables in cluster analysis. Journal of Classification, 5, 181-204.
-
(1988)
Journal of Classification
, vol.5
, pp. 181-204
-
-
Milligan, G.W.1
Cooper, M.C.2
-
30
-
-
0018910525
-
The validation of four ultrametric clustering algorithms
-
Milligan, G. W., & Isaac, P. D. (1980). The validation of four ultrametric clustering algorithms. Pattern Recognition, 12, 41-50.
-
(1980)
Pattern Recognition
, vol.12
, pp. 41-50
-
-
Milligan, G.W.1
Isaac, P.D.2
-
31
-
-
0020496932
-
The effect of cluster size, dimensionality, and the number of clusters on recovery of true cluster structure
-
Milligan, G. W., Soon, S. C., & Sokal, L. M. (1983). The effect of cluster size, dimensionality, and the number of clusters on recovery of true cluster structure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5, 40-47.
-
(1983)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.5
, pp. 40-47
-
-
Milligan, G.W.1
Soon, S.C.2
Sokal, L.M.3
-
32
-
-
84973745157
-
The measurement of classification agreement: An adjustment to the Rand statistic for chance agreement
-
Morey, L., & Agresti, A. (1984). The measurement of classification agreement: An adjustment to the Rand statistic for chance agreement, Educational and Psychological Measurement, 44, 33-37.
-
(1984)
Educational and Psychological Measurement
, vol.44
, pp. 33-37
-
-
Morey, L.1
Agresti, A.2
-
33
-
-
84926272235
-
A comparison of cluster analysis techniques within a sequential validation framework
-
Morey, L. C., Blashfield, R. K., & Skinner, H. A. (1983). A comparison of cluster analysis techniques within a sequential validation framework. Multivariate Behavioral Research, 18, 309-329.
-
(1983)
Multivariate Behavioral Research
, vol.18
, pp. 309-329
-
-
Morey, L.C.1
Blashfield, R.K.2
Skinner, H.A.3
-
34
-
-
84950632109
-
Objective criteria for the evaluation of clustering methods
-
Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66, 846-850.
-
(1971)
Journal of the American Statistical Association
, vol.66
, pp. 846-850
-
-
Rand, W.M.1
-
35
-
-
0030544126
-
A computer program to calculate Hubert and Arabie's adjusted Rand index
-
Saltstone, R., & Stange, K. (1996). A computer program to calculate Hubert and Arabie's adjusted Rand index. Journal of Classification, 13, 169-172.
-
(1996)
Journal of Classification
, vol.13
, pp. 169-172
-
-
Saltstone, R.1
Stange, K.2
-
36
-
-
0346773308
-
Monte Carlo tests of the accuracy of cluster analysis algorithms: A comparison of hierarchical and nonhierarchical methods
-
Scheiber, D., & Schneider, W. (1985). Monte Carlo tests of the accuracy of cluster analysis algorithms: A comparison of hierarchical and nonhierarchical methods. Multivariate Behavioral Research, 20, 283-304.
-
(1985)
Multivariate Behavioral Research
, vol.20
, pp. 283-304
-
-
Scheiber, D.1
Schneider, W.2
-
37
-
-
0142136684
-
Local optima in X-means clustering: What you don't know may hurt you
-
Steinley, D. (2003). Local optima in X-means clustering: What you don't know may hurt you. Psychological Methods, 8, 294-304.
-
(2003)
Psychological Methods
, vol.8
, pp. 294-304
-
-
Steinley, D.1
-
39
-
-
0032342923
-
A comparison of the classification capabilities of the 1-dimensional Kohonen neural network with two partitioning and three hierarchical cluster analysis algorithms
-
Waller, N. G., Kaiser, H. A., Illian, J. B., & Manry, M. (1998). A comparison of the classification capabilities of the 1-dimensional Kohonen neural network with two partitioning and three hierarchical cluster analysis algorithms. Psychometrika, 63, 5-22.
-
(1998)
Psychometrika
, vol.63
, pp. 5-22
-
-
Waller, N.G.1
Kaiser, H.A.2
Illian, J.B.3
Manry, M.4
-
40
-
-
0033408148
-
A method for generating simulated plasmodes and artificial test clusters with user-defined shape, size, and orientation
-
Waller, N., Underbill, J., & Kaiser, H. (1999). A method for generating simulated plasmodes and artificial test clusters with user-defined shape, size, and orientation. Multivariate Behavioral Research, 34, 123-142.
-
(1999)
Multivariate Behavioral Research
, vol.34
, pp. 123-142
-
-
Waller, N.1
Underbill, J.2
Kaiser, H.3
|