메뉴 건너뛰기




Volumn 11, Issue 2, 2006, Pages 178-192

Profiling local optima in K-means clustering: Developing a diagnostic technique

Author keywords

Cluster validation; K means clustering; Local optima

Indexed keywords

ALGORITHM; ARTICLE; CLUSTER ANALYSIS; COMPUTER PROGRAM; FACTORIAL ANALYSIS; HUMAN; MATHEMATICAL COMPUTING; MONTE CARLO METHOD; NONPARAMETRIC TEST; PSYCHOLOGY; STATISTICAL ANALYSIS; STATISTICS;

EID: 33745700805     PISSN: 1082989X     EISSN: None     Source Type: Journal    
DOI: 10.1037/1082-989X.11.2.178     Document Type: Article
Times cited : (73)

References (52)
  • 3
    • 21844482411 scopus 로고
    • A comparative evaluation of two superior stopping rules for hierarchical cluster analysis
    • Atlas, R. S., & Overall, J. E. (1994). A comparative evaluation of two superior stopping rules for hierarchical cluster analysis. Psychometrika, 59, 581-591.
    • (1994) Psychometrika , vol.59 , pp. 581-591
    • Atlas, R.S.1    Overall, J.E.2
  • 6
    • 85047669234 scopus 로고    scopus 로고
    • A comparison of maximum covariance and K-means cluster analysis in classifying cases into known taxon groups
    • Beauchaine, T. P., & Beauchaine, R. J. (2002). A comparison of maximum covariance and K-means cluster analysis in classifying cases into known taxon groups. Psychological Methods, 7, 245-261.
    • (2002) Psychological Methods , vol.7 , pp. 245-261
    • Beauchaine, T.P.1    Beauchaine, R.J.2
  • 7
    • 0000853112 scopus 로고
    • The methods and problems of cluster analysis
    • J. Nesselroade & R. B. Cattell (Eds.), New York: Plenum Press
    • Blashfield, R. K., & Aldenderfer, M. S. (1988). The methods and problems of cluster analysis. In J. Nesselroade & R. B. Cattell (Eds.), Handbook of multivariate experimental psychology (2nd ed., pp. 447-474). New York: Plenum Press.
    • (1988) Handbook of Multivariate Experimental Psychology 2nd Ed. , pp. 447-474
    • Blashfield, R.K.1    Aldenderfer, M.S.2
  • 8
    • 10844257374 scopus 로고    scopus 로고
    • Clustering binary data in the presence of masking variables
    • Brusco, M. J. (2004). Clustering binary data in the presence of masking variables. Psychological Methods, 9, 510-523.
    • (2004) Psychological Methods , vol.9 , pp. 510-523
    • Brusco, M.J.1
  • 9
    • 33746451728 scopus 로고    scopus 로고
    • A repetitive branch-and-bound algorithm for minimum within-cluster sum of squares partitioning
    • in press
    • Bruseo. M. J. (in press). A repetitive branch-and-bound algorithm for minimum within-cluster sum of squares partitioning. Psychometrika.
    • Psychometrika
    • Bruseo, M.J.1
  • 10
    • 0035534927 scopus 로고    scopus 로고
    • A variable-selection heuristic for K-means clustering
    • Brusco, M. J., & Cradit. J. D. (2001). A variable-selection heuristic for K-means clustering. Psychometrika, 66, 249-270.
    • (2001) Psychometrika , vol.66 , pp. 249-270
    • Brusco, M.J.1    Cradit, J.D.2
  • 13
    • 21844524255 scopus 로고
    • The effects of within-group covariance structure on recovery in cluster analysis: I. The bivariate case
    • Donoghue, J. R. (1995). The effects of within-group covariance structure on recovery in cluster analysis: I. The bivariate case. Multivariate Behavioral Research, 30, 227-254.
    • (1995) Multivariate Behavioral Research , vol.30 , pp. 227-254
    • Donoghue, J.R.1
  • 15
    • 33745722499 scopus 로고    scopus 로고
    • June. Paper presented at. the annual International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences, Las Vegas, NV
    • Falkenauer, E., & Marchand, A. (2001, June). Using K-means? Consider ArrayMiner. Paper presented at. the annual International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences, Las Vegas, NV.
    • (2001) Using K-means? Consider ArrayMiner
    • Falkenauer, E.1    Marchand, A.2
  • 16
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, 179-188.
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 19
    • 0001138328 scopus 로고
    • Algorithm AS136: A K-means clustering algorithm
    • Hartigan, J. A., & Wong. M. A. (1979). Algorithm AS136: A K-means clustering algorithm. Applied Statistics, 28, 100-108.
    • (1979) Applied Statistics , vol.28 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 24
    • 0036978190 scopus 로고    scopus 로고
    • Linear unidimensional scaling in the L2 norm: Basic optimization methods using MATLAB
    • Hubert, L., Arabie, P.. & Meulman, J. (2002). Linear unidimensional scaling in the L2 norm: Basic optimization methods using MATLAB. Journal of Classification, 19, 303-328.
    • (2002) Journal of Classification , vol.19 , pp. 303-328
    • Hubert, L.1    Arabie, P.2    Meulman, J.3
  • 26
    • 84970541720 scopus 로고
    • Multidimensional group analysis
    • Jancey, R. C. (1966). Multidimensional group analysis. Australian Journal of Botany. 14. 127-130.
    • (1966) Australian Journal of Botany , vol.14 , pp. 127-130
    • Jancey, R.C.1
  • 27
    • 0033196672 scopus 로고    scopus 로고
    • A cautionary note on using internal cross validation to select the number of clusters
    • Krieger, A. M., & Green, P. F. (1999). A cautionary note on using internal cross validation to select the number of clusters. Psychometrika, 64, 341-353.
    • (1999) Psychometrika , vol.64 , pp. 341-353
    • Krieger, A.M.1    Green, P.F.2
  • 28
    • 0016784903 scopus 로고
    • A Monte Carlo comparison for six. Clustering procedures
    • Kuiper, F. K., & Fisher, L. (1975). A Monte Carlo comparison for six. clustering procedures. Biometrics, 31, 777-784.
    • (1975) Biometrics , vol.31 , pp. 777-784
    • Kuiper, F.K.1    Fisher, L.2
  • 29
    • 0001457509 scopus 로고
    • Some methods of classification and analysis of multivariate observations
    • L. M. Le Cam & J. Neyman (Fkls.), Berkeley: University of California Press
    • MacQueen, J. (1967). Some methods of classification and analysis of multivariate observations. In L. M. Le Cam & J. Neyman (Fkls.), Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (Vol. 1, pp. 281-297). Berkeley: University of California Press.
    • (1967) Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability , vol.1 , pp. 281-297
    • MacQueen, J.1
  • 30
    • 0035619721 scopus 로고    scopus 로고
    • Optimal variable weighting for ultrametric and additive trees and K-means partitioning: Methods and software
    • Makarenkov, V., & Legendre, P. (2001). Optimal variable weighting for ultrametric and additive trees and K-means partitioning: Methods and software. Journal of Classification. 18, 245-271.
    • (2001) Journal of Classification , vol.18 , pp. 245-271
    • Makarenkov, V.1    Legendre, P.2
  • 33
    • 33745708366 scopus 로고    scopus 로고
    • [Computer software manual], Natick, MA: Author
    • MathWorks. (2004). Using MATLAB (Version 7) [Computer software manual], Natick, MA: Author.
    • (2004) Using MATLAB (Version 7)
  • 34
    • 0000226068 scopus 로고
    • A nearest-centroid technique for evaluating the minimum-variance clustering procedure
    • Mclntyre, R. M., & Blashfield, R. K. (1980). A nearest-centroid technique for evaluating the minimum-variance clustering procedure. Multivariate Behavioral Research, 15, 225-238.
    • (1980) Multivariate Behavioral Research , vol.15 , pp. 225-238
    • Mclntyre, R.M.1    Blashfield, R.K.2
  • 35
    • 33847457966 scopus 로고
    • An examination of the effect of six types of error perturbation on fifteen clustering algorithms
    • Milligan. G. W. (1980). An examination of the effect of six types of error perturbation on fifteen clustering algorithms. Psychometrika. 45, 325-342.
    • (1980) Psychometrika , vol.45 , pp. 325-342
    • Milligan, G.W.1
  • 36
    • 0000272920 scopus 로고
    • An algorithm for generating artificial test clusters
    • Milligan, G. W. (1985). An algorithm for generating artificial test clusters. Psychom.etrika, 50. 123-127.
    • (1985) Psychom.etrika , vol.50 , pp. 123-127
    • Milligan, G.W.1
  • 37
    • 0002271592 scopus 로고    scopus 로고
    • Clustering validation, results and implications for applied analysis
    • P. Arabie, L. J. Hubert, & G. De Soete (Eds.), River Edge, NJ: World Scientific
    • Milligan, G. W. (1996). Clustering validation, results and implications for applied analysis. In P. Arabie, L. J. Hubert, & G. De Soete (Eds.), Clustering and classification (pp. 341-375). River Edge, NJ: World Scientific.
    • (1996) Clustering and Classification , pp. 341-375
    • Milligan, G.W.1
  • 38
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • Milligan, G. W., & Cooper, M. C. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50, 159-179.
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 39
    • 84948872101 scopus 로고
    • A study of the comparability of external criteria for hierarchical cluster analysis
    • Milligan. G. W., & Cooper, M. C. (1986). A study of the comparability of external criteria for hierarchical cluster analysis. Multivariate Behavioral Research, 21, 441-458.
    • (1986) Multivariate Behavioral Research , vol.21 , pp. 441-458
    • Milligan, G.W.1    Cooper, M.C.2
  • 41
    • 84926272235 scopus 로고
    • A comparison of cluster analysis techniques within a sequential validation framework
    • Morey, L. C., Blashfield, R. K., & Skinner, H. A. (1983). A comparison of cluster analysis techniques within a sequential validation framework. Multivariate Behavioral Research, 18, 309-329.
    • (1983) Multivariate Behavioral Research , vol.18 , pp. 309-329
    • Morey, L.C.1    Blashfield, R.K.2    Skinner, H.A.3
  • 42
    • 21144479452 scopus 로고
    • Identifying cluster overlap wilh NORMIX population membership probabilities
    • Price, L. J. (1993). Identifying cluster overlap wilh NORMIX population membership probabilities. Multivariate Behavioral Research, 28, 235-262.
    • (1993) Multivariate Behavioral Research , vol.28 , pp. 235-262
    • Price, L.J.1
  • 43
    • 0142136684 scopus 로고    scopus 로고
    • K-means clustering: What you don't know may hurl you
    • Steinley, D. (2003). K-means clustering: What you don't know may hurl you. Psychological Methods, 8, 294-304.
    • (2003) Psychological Methods , vol.8 , pp. 294-304
    • Steinley, D.1
  • 44
    • 4344611435 scopus 로고    scopus 로고
    • Properties of the Hubert-Arabie adjusted Rand index
    • Stanley, D. (2004a). Properties of the Hubert-Arabie adjusted Rand index. Psychological Methods, 9, 386-396.
    • (2004) Psychological Methods , vol.9 , pp. 386-396
    • Stanley, D.1
  • 45
    • 33744726077 scopus 로고    scopus 로고
    • Standardizing variables in K-means clustering
    • D. Banks, L. House, F. R. McMorris, P. Arabie, & W. Gaul (Eds.), New York: Springer
    • Steinley, D. (2004b). Standardizing variables in K-means clustering. In D. Banks, L. House, F. R. McMorris, P. Arabie, & W. Gaul (Eds.), Classification, clustering, and data mining applications (pp. 53-60). New York: Springer.
    • (2004) Classification, Clustering, and Data Mining Applications , pp. 53-60
    • Steinley, D.1
  • 48
    • 33744720321 scopus 로고    scopus 로고
    • OCLUS: An analytic method for generating clusters with known overlap
    • Steinley, D., & Henson, R. (2005). OCLUS: An analytic method for generating clusters with known overlap. Journal of Classification, 22, 221-250.
    • (2005) Journal of Classification , vol.22 , pp. 221-250
    • Steinley, D.1    Henson, R.2
  • 50
    • 2542529317 scopus 로고    scopus 로고
    • Determining the number of clusters by sampling with replacement
    • Tonidandel, S., & Overall, J. E. (2004). Determining the number of clusters by sampling with replacement. Psychological Methods, 9, 238-249.
    • (2004) Psychological Methods , vol.9 , pp. 238-249
    • Tonidandel, S.1    Overall, J.E.2
  • 51
    • 25144452510 scopus 로고    scopus 로고
    • Exploring function estimators as an alternative to regression in psychology
    • Walker, I., & Milne, S. (2005). Exploring function estimators as an alternative to regression in psychology. Behavior Research Mettwds, 37, 23-36.
    • (2005) Behavior Research Mettwds , vol.37 , pp. 23-36
    • Walker, I.1    Milne, S.2
  • 52
    • 0032342923 scopus 로고    scopus 로고
    • A comparison of the classification capabilities of the 1-dimensional Kohonen neural network with two partitioning and three hierarchical cluster analysis algorithms
    • Waller, N. G., Kaiser, H. A., Illian. J. B., & Manry, M. (1998). A comparison of the classification capabilities of the 1-dimensional Kohonen neural network with two partitioning and three hierarchical cluster analysis algorithms. Psychometrika, 63, 5-22.
    • (1998) Psychometrika , vol.63 , pp. 5-22
    • Waller, N.G.1    Kaiser, H.A.2    Illian, J.B.3    Manry, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.