-
1
-
-
79951787696
-
-
For reviews, see
-
For reviews, see
-
-
-
-
4
-
-
33645909573
-
-
A. Alexakis, C. Malan, L. Lea, K. Tissot-Croset, D. Polet, C. Falciola, Chimia 2006, 60, 124
-
(2006)
Chimia
, vol.60
, pp. 124
-
-
Alexakis, A.1
Malan, C.2
Lea, L.3
Tissot-Croset, K.4
Polet, D.5
Falciola, C.6
-
5
-
-
51049107936
-
-
S. R. Harutyunyan, T. denHartog, K. Geurts, A. J. Minnaard, B. L. Feringa, Chem. Rev. 2008, 108, 2824
-
(2008)
Chem. Rev.
, vol.108
, pp. 2824
-
-
Harutyunyan, S.R.1
Denhartog, T.2
Geurts, K.3
Minnaard, A.J.4
Feringa, B.L.5
-
8
-
-
51049122142
-
-
A. Alexakis, J. E. Bäckvall, N. Krause, O. Pamies, M. Dieguez, Chem. Rev. 2008, 108, 2796
-
(2008)
Chem. Rev.
, vol.108
, pp. 2796
-
-
Alexakis, A.1
Bäckvall, J.E.2
Krause, N.3
Pamies, O.4
Dieguez, M.5
-
12
-
-
0000303655
-
-
C. C. Tseng, S. J. Yen, H. L. Goering, J. Org. Chem. 1986, 51, 2892.
-
(1986)
J. Org. Chem.
, vol.51
, pp. 2892
-
-
Tseng, C.C.1
Yen, S.J.2
Goering, H.L.3
-
13
-
-
3042822552
-
-
For a review, see.
-
For a review, see:, M. Pineschi, New J. Chem. 2004, 28, 657.
-
(2004)
New J. Chem.
, vol.28
, pp. 657
-
-
Pineschi, M.1
-
14
-
-
0032532776
-
-
For addition referenced on the reaction, see
-
F. Badalassi, P. Crotti, F. Macchia, M. Pineschi, A. Arnold, B. L. Feringa, Tetrahedron Lett. 1998, 39, 7795; For addition referenced on the reaction, see
-
(1998)
Tetrahedron Lett.
, vol.39
, pp. 7795
-
-
Badalassi, F.1
Crotti, P.2
MacChia, F.3
Pineschi, M.4
Arnold, A.5
Feringa, B.L.6
-
16
-
-
48349128812
-
-
For vinylic aziridines, see
-
R. Millet, A. Alexakis, Synlett 2008, 1797; For vinylic aziridines, see
-
(2008)
Synlett
, pp. 1797
-
-
Millet, R.1
Alexakis, A.2
-
17
-
-
0142231047
-
-
F. Gini, F. DelMoro, F. Macchia, M. Pineschi, Tetrahedron Lett. 2003, 44, 8559.
-
(2003)
Tetrahedron Lett.
, vol.44
, pp. 8559
-
-
Gini, F.1
Delmoro, F.2
MacChia, F.3
Pineschi, M.4
-
18
-
-
21344466856
-
-
F. Bertozzi, P. Crotti, F. Macchia, M. Pineschi, B. L. Feringa, Angew. Chem. 2001, 113, 956
-
(2001)
Angew. Chem.
, vol.113
, pp. 956
-
-
Bertozzi, F.1
Crotti, P.2
MacChia, F.3
Pineschi, M.4
Feringa, B.L.5
-
20
-
-
1642332478
-
-
M. Pineschi, F. DelMoro, P. Crotti, V. DiBussolo, F. Macchia, J. Org. Chem. 2004, 69, 2099
-
(2004)
J. Org. Chem.
, vol.69
, pp. 2099
-
-
Pineschi, M.1
Delmoro, F.2
Crotti, P.3
Dibussolo, V.4
MacChia, F.5
-
21
-
-
13844270635
-
-
M. Pineschi, F. DelMoro, P. Crotti, V. DiBussolo, F. Macchia, Synthesis 2005, 334.
-
(2005)
Synthesis
, pp. 334
-
-
Pineschi, M.1
Delmoro, F.2
Crotti, P.3
Dibussolo, V.4
MacChia, F.5
-
23
-
-
77149149016
-
-
For information about DYKAT, see
-
J. B. Langlois, A. Alexakis, Adv. Synth. Catal. 2010, 352, 447; For information about DYKAT, see
-
(2010)
Adv. Synth. Catal.
, vol.352
, pp. 447
-
-
Langlois, J.B.1
Alexakis, A.2
-
25
-
-
53849089968
-
-
J. Steinreiber, K. Faber, H. Griengl, Chem. Eur. J. 2008, 14, 8060.
-
(2008)
Chem. Eur. J.
, vol.14
, pp. 8060
-
-
Steinreiber, J.1
Faber, K.2
Griengl, H.3
-
26
-
-
79951795057
-
-
Substrate 1 was formed insitu by treatment of (E)-pent-3-en-2-yl acetate with trimethylsilylbromide (1.4equiv) at room temperature for 4h. Control experiments proved that generated TMSOAc was inert under the reaction conditions
-
Substrate 1 was formed insitu by treatment of (E)-pent-3-en-2-yl acetate with trimethylsilylbromide (1.4equiv) at room temperature for 4h. Control experiments proved that generated TMSOAc was inert under the reaction conditions.
-
-
-
-
27
-
-
40949123444
-
-
(E)-4-chloropent-2-ene (2) has been successfully used in nickel-catalyzed enantioselective dynamic resolution process.
-
(E)-4-chloropent-2-ene (2) has been successfully used in nickel-catalyzed enantioselective dynamic resolution process:, S. Son, G. C. Fu, J. Am. Chem. Soc. 2008, 130, 2756.
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 2756
-
-
Son, S.1
Fu, G.C.2
-
28
-
-
79951804698
-
-
Slow addition of the Grignard reagent is known to favor the formation of the organocopper reagent instead of the organocuprate. See Ref.[1e]
-
Slow addition of the Grignard reagent is known to favor the formation of the organocopper reagent instead of the organocuprate. See Ref.[1e].
-
-
-
-
29
-
-
79951795748
-
-
For alkylation of allylic alcohols by the Murahashi method, see
-
For alkylation of allylic alcohols by the Murahashi method, see
-
-
-
-
31
-
-
0003505720
-
-
For alkylation of allylic carbamates, see
-
H. L. Goering, C. C. Tseng, J. Org. Chem. 1985, 50, 1597; For alkylation of allylic carbamates, see
-
(1985)
J. Org. Chem.
, vol.50
, pp. 1597
-
-
Goering, H.L.1
Tseng, C.C.2
-
32
-
-
0000749009
-
-
For alkylation of allylic carboxylates, see
-
H. L. Goering, S. S. Kantner, C. C. Tseng, J. Org. Chem. 1983, 48, 715; For alkylation of allylic carboxylates, see
-
(1983)
J. Org. Chem.
, vol.48
, pp. 715
-
-
Goering, H.L.1
Kantner, S.S.2
Tseng, C.C.3
-
35
-
-
79951803646
-
-
See Ref.[2c]
-
See Ref.[2c]
-
-
-
-
36
-
-
0001526137
-
-
however, no formation of the Zisomer was detected in the alkylation of allylic phosphonates
-
T. L. Underiner, S. D. Paisley, J. Schmitter, L. Lesheski, H. L. Goering, J. Org. Chem. 1989, 54, 2369; however, no formation of the Zisomer was detected in the alkylation of allylic phosphonates
-
(1989)
J. Org. Chem.
, vol.54
, pp. 2369
-
-
Underiner, T.L.1
Paisley, S.D.2
Schmitter, J.3
Lesheski, L.4
Goering, H.L.5
-
38
-
-
79951808208
-
-
2 represents the difference in energy between the conformers of substrate 2. The value has been calculated with Gaussian 03 using MP2/6- 311G**//PBE 1PBE/6-31 1G** methods. See the Supporting Information for experimental details
-
2 represents the difference in energy between the conformers of substrate 2. The value has been calculated with Gaussian 03 using MP2/6-311G**//PBE1PBE/6-311G** methods. See the Supporting Information for experimental details.
-
-
-
-
39
-
-
79951804348
-
-
For reviews on PKR, see
-
For reviews on PKR, see
-
-
-
-
45
-
-
79951801865
-
-
1HNMR methods used to determine the proportion of each isomer have an error of about 3 %
-
1HNMR methods used to determine the proportion of each isomer have an error of about 3 %.
-
-
-
-
46
-
-
70349924711
-
-
For the unique previous example of transition-metal-catalyzed SKR, see
-
For the unique previous example of transition-metal-catalyzed SKR, see:, L. C. Miller, J. M. Ndungu, R. Sarpong, Angew. Chem. 2009, 121, 2434
-
(2009)
Angew. Chem.
, vol.121
, pp. 2434
-
-
Miller, L.C.1
Ndungu, J.M.2
Sarpong, R.3
-
48
-
-
79951778072
-
-
III intermediate in the reaction mechanism, see
-
III intermediate in the reaction mechanism, see
-
-
-
-
49
-
-
2442645140
-
-
M. Yamanaka, S. Kato, E. Nakamura, J. Am. Chem. Soc. 2004, 126, 6287
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 6287
-
-
Yamanaka, M.1
Kato, S.2
Nakamura, E.3
-
50
-
-
67650311167
-
-
N. Yoshikai, S. L. Zhang, E. Nakamura, J. Am. Chem. Soc. 2008, 130, 12862.
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 12862
-
-
Yoshikai, N.1
Zhang, S.L.2
Nakamura, E.3
-
51
-
-
79951807478
-
-
N2 adducts
-
N2 adducts.
-
-
-
-
52
-
-
79951778254
-
-
-1
-
-1.
-
-
-
-
53
-
-
17644389731
-
-
Ligand L5 is known to be efficient for the alkylation of cinnamyl chloride
-
Ligand L5 is known to be efficient for the alkylation of cinnamyl chloride:, K. Tissot-Croset, D. Polet, A. Alexakis, Angew. Chem. 2004, 116, 2480
-
(2004)
Angew. Chem.
, vol.116
, pp. 2480
-
-
Tissot-Croset, K.1
Polet, D.2
Alexakis, A.3
-
56
-
-
79951786638
-
-
For reports on the special reactivity of aryl Grignard reagents in copper-catalyzed allylic substitution, see
-
For reports on the special reactivity of aryl Grignard reagents in copper-catalyzed allylic substitution, see
-
-
-
-
57
-
-
0000179583
-
-
C. C. Tseng, S. D. Paisley, H. L. Goering, J. Org. Chem. 1986, 51, 2884
-
(1986)
J. Org. Chem.
, vol.51
, pp. 2884
-
-
Tseng, C.C.1
Paisley, S.D.2
Goering, H.L.3
-
58
-
-
79951781308
-
-
See Ref.[10g]
-
See Ref.[10g]
-
-
-
-
60
-
-
0000659333
-
-
J. E. Bäckvall, E. S. M. Persson, A. Bombrun, J. Org. Chem. 1994, 59, 4126.
-
(1994)
J. Org. Chem.
, vol.59
, pp. 4126
-
-
Bäckvall, J.E.1
Persson, E.S.M.2
Bombrun, A.3
-
61
-
-
79951784727
-
-
(E)-5-chloro-2,6-dimethylhept-3-ene and (E)-5-chloro-2,2,6,6- tetramethylhept-3-ene have been evaluated in the reaction conditions. Unfortunately, an undesired elimination reaction leading to the formation of a diene and a lack of reactivity were respectively observed
-
(E)-5-chloro-2,6-dimethylhept-3-ene and (E)-5-chloro-2,2,6,6- tetramethylhept-3-ene have been evaluated in the reaction conditions. Unfortunately, an undesired elimination reaction leading to the formation of a diene and a lack of reactivity were respectively observed.
-
-
-
-
62
-
-
79951783677
-
-
For previous examples of copper-catalyzed asymmetric allylic alkylation/cross-metathesis sequences involving an acrylate as a coupling partner, see
-
For previous examples of copper-catalyzed asymmetric allylic alkylation/cross-metathesis sequences involving an acrylate as a coupling partner, see
-
-
-
-
64
-
-
53249085490
-
-
M. A. Kacprzynski, T. L. May, S. A. Kazane, A. H. Hoveyda, Angew. Chem. 2007, 119, 4638
-
(2007)
Angew. Chem.
, vol.119
, pp. 4638
-
-
Kacprzynski, M.A.1
May, T.L.2
Kazane, S.A.3
Hoveyda, A.H.4
-
66
-
-
52449117152
-
-
A. W. vanZijl, W. Szymanski, F. Lopez, A. J. Minnaard, B. L. Feringa, J. Org. Chem. 2008, 73, 6994.
-
(2008)
J. Org. Chem.
, vol.73
, pp. 6994
-
-
Vanzijl, A.W.1
Szymanski, W.2
Lopez, F.3
Minnaard, A.J.4
Feringa, B.L.5
-
67
-
-
79951786293
-
-
This SKR/cross-metathesis sequence could be particularly interesting since the copper-catalyzed asymmetric allylic alkylation of crotyl chloride remained a preeminent challenge in this field, affording after extensive optimizations only 80 %ee for the γ-alkylated product
-
This SKR/cross-metathesis sequence could be particularly interesting since the copper-catalyzed asymmetric allylic alkylation of crotyl chloride remained a preeminent challenge in this field, affording after extensive optimizations only 80 %ee for the γ-alkylated product.
-
-
-
|