-
1
-
-
0000687774
-
-
For reviews, see: a, Jacobsen, E. N, Pfaltz, A, Yamamoto, H, Eds, Springer: New York, Chapter 24
-
For reviews, see: (a) Pfaltz, A.; Lautens, M. In Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: New York, 1999; Vol. 2, Chapter 24.
-
(1999)
Comprehensive Asymmetric Catalysis
, vol.2
-
-
Pfaltz, A.1
Lautens, M.2
-
4
-
-
33645909573
-
-
For reviews, see: a
-
For reviews, see: (a) Alexakis, A.; Malan, C.; Lea, L.; Tissot-Croset, K.; Polet, D.; Falciola, C. Chimia 2006, 60, 124-130.
-
(2006)
Chimia
, vol.60
, pp. 124-130
-
-
Alexakis, A.1
Malan, C.2
Lea, L.3
Tissot-Croset, K.4
Polet, D.5
Falciola, C.6
-
5
-
-
22744436808
-
-
Studies to date have focused largely on couplings of primary allylic electrophiles that generate terminal olefins or, symmetrical secondary electrophiles
-
(b) Yorimitsu, H.; Oshima, K. Angew. Chem., Int. Ed. 2005, 44, 4435-4439. Studies to date have focused largely on couplings of primary allylic electrophiles that generate terminal olefins (or, symmetrical secondary electrophiles).
-
(2005)
Angew. Chem., Int. Ed
, vol.44
, pp. 4435-4439
-
-
Yorimitsu, H.1
Oshima, K.2
-
6
-
-
0042368347
-
-
For reactions with organozinc reagents, use of RZnX has been reported to be problematic for example, see: Dübner, F.; Knochel, P. Angew. Chem., Int. Ed. 1999, 38, 379-381
-
For reactions with organozinc reagents, use of RZnX has been reported to be problematic (for example, see: Dübner, F.; Knochel, P. Angew. Chem., Int. Ed. 1999, 38, 379-381
-
-
-
-
7
-
-
17644390658
-
-
2 (e.g., 2-6 equiv) is typically employed, resulting in the transfer of ≤25% of the available R groups.
-
2 (e.g., 2-6 equiv) is typically employed, resulting in the transfer of ≤25% of the available R groups.
-
-
-
-
8
-
-
37049107897
-
-
For example, see: a
-
For example, see: (a) Consiglio, G.; Morandini, F.; Piccolo, O. J. Chem. Soc., Chem. Commun. 1983, 112-114.
-
(1983)
J. Chem. Soc., Chem. Commun
, pp. 112-114
-
-
Consiglio, G.1
Morandini, F.2
Piccolo, O.3
-
9
-
-
0032486806
-
-
(b) Gomez-Bengoa, E.; Heron, N. M.; Didiuk, M. T.; Luchaco, C. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1998, 120, 7649-7650.
-
(1998)
J. Am. Chem. Soc
, vol.120
, pp. 7649-7650
-
-
Gomez-Bengoa, E.1
Heron, N.M.2
Didiuk, M.T.3
Luchaco, C.A.4
Hoveyda, A.H.5
-
10
-
-
0034614731
-
-
Progress with nucleophiles that exhibit greater functional-group tolerance has been relatively modest. For examples, see: (a) Chung, K.-G, Miyake, Y, Uemura, S. J. Chem. Soc, Perkin Trans. 1 2000, 15-18
-
Progress with nucleophiles that exhibit greater functional-group tolerance has been relatively modest. For examples, see: (a) Chung, K.-G.; Miyake, Y.; Uemura, S. J. Chem. Soc., Perkin Trans. 1 2000, 15-18.
-
-
-
-
12
-
-
33947723939
-
-
(c) Novak, A.; Fryatt, R.; Woodward, S. C. R. Chim. 2007, 10, 206-212.
-
(2007)
C. R. Chim
, vol.10
, pp. 206-212
-
-
Novak, A.1
Fryatt, R.2
Woodward, S.3
-
13
-
-
0037840732
-
-
Huo, S. Org. Lett. 2003, 5, 423-425.
-
(2003)
Org. Lett
, vol.5
, pp. 423-425
-
-
Huo, S.1
-
16
-
-
0037016413
-
-
The addition of NaCl has a pronounced effect on the rate of the cross-coupling, but little impact on the ee. Two of the possible roles of NaCl are to increase the ionic strength of the reaction mixture (the use of more polar solvents is generally advantageous) and to activate the organozinc reagent. For a review of halide effects in transition-metal catalysis, see: Fagnou, K.; Lautens, M. Angew. Chem., Int. Ed. 2002, 41, 26-47.
-
The addition of NaCl has a pronounced effect on the rate of the cross-coupling, but little impact on the ee. Two of the possible roles of NaCl are to increase the ionic strength of the reaction mixture (the use of more polar solvents is generally advantageous) and to activate the organozinc reagent. For a review of halide effects in transition-metal catalysis, see: Fagnou, K.; Lautens, M. Angew. Chem., Int. Ed. 2002, 41, 26-47.
-
-
-
-
18
-
-
40949117359
-
-
2 is bulky (eq 1), coupling is inefficient.
-
2 is bulky (eq 1), coupling is inefficient.
-
-
-
-
19
-
-
40949165085
-
-
For each Negishi reaction, the product is generated with >20:1 E:Z selectivity.
-
(b) For each Negishi reaction, the product is generated with >20:1 E:Z selectivity.
-
-
-
-
20
-
-
40949155323
-
-
10) The regioisomeric distribution of the cross-coupling product is independent of the regioisomeric composition of the allylic chloride (Table 2, entries 1-3, This contrasts with most copper-catalyzed reactions of allylic electrophiles, which exhibit a strong preference for formation of the regioisomer derived from SN2′ substitution see ref 2
-
N2′ substitution (see ref 2).
-
-
-
-
21
-
-
40949146274
-
-
With a modified procedure, cross-couplings of aryl-substituted (R 1, aryl, Table 2) allylic chlorides can be achieved in excellent ee and moderate yield ≥94% ee; see the Supporting Information
-
1 = aryl, Table 2) allylic chlorides can be achieved in excellent ee and moderate yield (≥94% ee; see the Supporting Information).
-
-
-
-
22
-
-
0042379988
-
-
For applications of enantioselective metal-catalyzed allylations in total synthesis, see
-
For applications of enantioselective metal-catalyzed allylations in total synthesis, see: Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921-2943.
-
(2003)
Chem. Rev
, vol.103
, pp. 2921-2943
-
-
Trost, B.M.1
Crawley, M.L.2
-
23
-
-
0033521185
-
-
Suh, Y.-G.; Kim, S.-A.; Jung, J.-K.; Shin, D.-Y.; Min, K.-H.; Koo, B.-A.; Kim, H.-S. Angew. Chem., Int. Ed. 1999, 38, 3545-3547.
-
(1999)
Angew. Chem., Int. Ed
, vol.38
, pp. 3545-3547
-
-
Suh, Y.-G.1
Kim, S.-A.2
Jung, J.-K.3
Shin, D.-Y.4
Min, K.-H.5
Koo, B.-A.6
Kim, H.-S.7
|