메뉴 건너뛰기




Volumn 23, Issue 1, 2011, Pages 1-45

Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains

Author keywords

[No Author keywords available]

Indexed keywords

ACTION POTENTIAL; ANIMAL; ARTICLE; BIOLOGICAL MODEL; HUMAN; NERVE CELL NETWORK; PHYSIOLOGY; SENSORY RECEPTOR; SIGNAL PROCESSING;

EID: 78650608745     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00058     Document Type: Article
Times cited : (95)

References (98)
  • 1
    • 0032609779 scopus 로고    scopus 로고
    • The effect of correlated variability on the accuracy of a population code
    • Abbott, L., & Dayan, P. (1999). The effect of correlated variability on the accuracy of a population code. Neural Computation, 11, 91-101.
    • (1999) Neural Computation , vol.11 , pp. 91-101
    • Abbott, L.1    Dayan, P.2
  • 2
    • 78650592845 scopus 로고    scopus 로고
    • Efficient Markov chain Monte Carlo methods for decoding neural spike trains
    • Ahmadian, Y., Pillow, J. W., & Paninski, L. (2011). Efficient Markov chain Monte Carlo methods for decoding neural spike trains. Neural Computation, 23(1), 46-96.
    • (2011) Neural Computation , vol.23 , Issue.1 , pp. 46-96
    • Ahmadian, Y.1    Pillow, J.W.2    Paninski, L.3
  • 4
    • 0032521364 scopus 로고    scopus 로고
    • Refractoriness and neural precision
    • Berry, M., & Meister, M. (1998). Refractoriness and neural precision. Journal of Neuroscience, 18, 2200-2211.
    • (1998) Journal of Neuroscience , vol.18 , pp. 2200-2211
    • Berry, M.1    Meister, M.2
  • 6
    • 0000463223 scopus 로고
    • Coding and computation with neural spike trains
    • Bialek, W., & Zee, A. (1990). Coding and computation with neural spike trains. Journal of Statistical Physics, 59, 103-115.
    • (1990) Journal of Statistical Physics , vol.59 , pp. 103-115
    • Bialek, W.1    Zee, A.2
  • 8
    • 0023686914 scopus 로고
    • Maximum likelihood analysis of spike trains of interacting nerve cells
    • Brillinger, D. (1988). Maximum likelihood analysis of spike trains of interacting nerve cells. Biological Cyberkinetics, 59, 189-200.
    • (1988) Biological Cyberkinetics , vol.59 , pp. 189-200
    • Brillinger, D.1
  • 9
    • 0000059288 scopus 로고
    • Nerve cell spike train data analysis: A progression of technique
    • Brillinger, D. (1992). Nerve cell spike train data analysis: A progression of technique. Journal of the American Statistical Association, 87, 260-271.
    • (1992) Journal of the American Statistical Association , vol.87 , pp. 260-271
    • Brillinger, D.1
  • 11
    • 1542615171 scopus 로고    scopus 로고
    • Recursive Bayesian decoding of motor cortical signals by particle filtering
    • Brockwell, A., Rojas, A., & Kass, R. (2004). Recursive Bayesian decoding of motor cortical signals by particle filtering. Journal of Neurophysiology, 91, 1899-1907.
    • (2004) Journal of Neurophysiology , vol.91 , pp. 1899-1907
    • Brockwell, A.1    Rojas, A.2    Kass, R.3
  • 12
    • 0036482863 scopus 로고    scopus 로고
    • The time-rescaling theorem and its application to neural spike train data analysis
    • Brown, E., Barbieri, R., Ventura, V., Kass, R., & Frank, L. (2002). The time-rescaling theorem and its application to neural spike train data analysis. Neural Computation, 14, 325-346.
    • (2002) Neural Computation , vol.14 , pp. 325-346
    • Brown, E.1    Barbieri, R.2    Ventura, V.3    Kass, R.4    Frank, L.5
  • 13
    • 0032530363 scopus 로고    scopus 로고
    • A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells
    • Brown, E., Frank, L., Tang, D., Quirk, M., & Wilson, M. (1998). A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. Journal of Neuroscience, 18, 7411-7425.
    • (1998) Journal of Neuroscience , vol.18 , pp. 7411-7425
    • Brown, E.1    Frank, L.2    Tang, D.3    Quirk, M.4    Wilson, M.5
  • 14
    • 78650591701 scopus 로고    scopus 로고
    • Mutual information, Fisher information, & population coding
    • Brunel, N., & Nadal, J. P. (1998). Mutual information, Fisher information, & population coding. Neural Computation, 10, 773-782.
    • (1998) Neural Computation , vol.10 , pp. 773-782
    • Brunel, N.1    Nadal, J.P.2
  • 15
    • 78650623690 scopus 로고    scopus 로고
    • Quick and accurate information calculations based on linear characterizations of sensory neurons
    • Butts, D., & Stanley, G. (2003). Quick and accurate information calculations based on linear characterizations of sensory neurons. Society for Neuroscience Abstracts 29.
    • (2003) Society for Neuroscience Abstracts , vol.29
    • Butts, D.1    Stanley, G.2
  • 16
    • 33646165901 scopus 로고    scopus 로고
    • Nonlinear information processing in a model sensory system
    • Chacron, M. (2005). Nonlinear information processing in a model sensory system. Journal of Neurophysiology, 95, 2933-2946.
    • (2005) Journal of Neurophysiology , vol.95 , pp. 2933-2946
    • Chacron, M.1
  • 17
    • 0013028436 scopus 로고    scopus 로고
    • A simple white noise analysis of neuronal light responses
    • Chichilnisk, E. J. (2001). A simple white noise analysis of neuronal light responses. Network: Computation in Neural Systems, 12, 199-213.
    • (2001) Network: Computation in Neural Systems , vol.12 , pp. 199-213
    • Chichilnisk, E.J.1
  • 20
    • 78650594632 scopus 로고    scopus 로고
    • Hierarchical Bayesian modeling and Markov chain Monte Carlo sampling for tuning curve analysis
    • Cronin, B., Stevenson, I. H., Sur, M., & Kording, K. P. (2009). Hierarchical Bayesian modeling and Markov chain Monte Carlo sampling for tuning curve analysis. J. Neurophysiol, 00379. 2009.
    • (2009) J Neurophysiol , pp. 00379
    • Cronin, B.1    Stevenson, I.H.2    Sur, M.3    Kording, K.P.4
  • 22
    • 0023740277 scopus 로고
    • Real-time performance of a movement-senstive neuron in the blowfly visual system: Coding and information transmission in short spike sequences
    • de Ruyter van Steveninck, R., & Bialek, W. (1988). Real-time performance of a movement-senstive neuron in the blowfly visual system: Coding and information transmission in short spike sequences. Proc. R. Soc. Lond. B, 234, 379-414.
    • (1988) Proc. R. Soc. Lond. B , vol.234 , pp. 379-414
    • De Ruyter van Steveninck, R.1    Bialek, W.2
  • 23
    • 0029110896 scopus 로고
    • Reliability and statistical efficiency of a blowfly movement-sensitive neuron
    • de Ruyter van Steveninck, R., & Bialek, W. (1995). Reliability and statistical efficiency of a blowfly movement-sensitive neuron. Phil. Trans. R. Soc. Lond. Ser. B, 348, 321-340.
    • (1995) Phil. Trans. R. Soc. Lond. Ser. B , vol.348 , pp. 321-340
    • De Ruyter van Steveninck, R.1    Bialek, W.2
  • 24
    • 0001396352 scopus 로고    scopus 로고
    • Asymmetric dynamics in optimal variance adaptation
    • DeWeese, M., & Zador, A. (1998). Asymmetric dynamics in optimal variance adaptation. Neural Computation, 10(5), 1179-1202.
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1179-1202
    • Deweese, M.1    Zador, A.2
  • 25
    • 0036828974 scopus 로고    scopus 로고
    • Connecting cortex to machines: Recent advances in brain interfaces
    • Donoghue, J. (2002). Connecting cortex to machines: Recent advances in brain interfaces. Nature Neuroscience, 5, 1085-1088.
    • (2002) Nature Neuroscience , vol.5 , pp. 1085-1088
    • Donoghue, J.1
  • 26
    • 0003665481 scopus 로고    scopus 로고
    • Doucet, A., de Freitas, N., & Gordon, N. (Eds.) Berlin: Springer
    • Doucet, A., de Freitas, N., & Gordon, N. (Eds.). (2001). Sequential Monte Carlo in practice. Berlin: Springer.
    • (2001) Sequential Monte Carlo in practice
  • 29
    • 33847716709 scopus 로고    scopus 로고
    • Construction of point process adaptive filter algorithms for neural systems using sequential Monte Carlo methods
    • Ergun, A., Barbieri, R., Eden, U., Wilson, M., & Brown, E. (2007). Construction of point process adaptive filter algorithms for neural systems using sequential Monte Carlo methods. IEEE Transactions on Biomedical Engineering, 54, 419-428.
    • (2007) IEEE Transactions on Biomedical Engineering , vol.54 , pp. 419-428
    • Ergun, A.1    Barbieri, R.2    Eden, U.3    Wilson, M.4    Brown, E.5
  • 30
    • 0000350343 scopus 로고
    • Posterior mode estimation by extended Kalman filtering for multivariate dynamic generalized linear models
    • Fahrmeir, L. (1992). Posterior mode estimation by extended Kalman filtering for multivariate dynamic generalized linear models. Journal of the American Statistical Association, 87(418), 501-509.
    • (1992) Journal of the American Statistical Association , vol.87 , Issue.418 , pp. 501-509
    • Fahrmeir, L.1
  • 32
    • 85162021749 scopus 로고    scopus 로고
    • Bayesian inference for spiking neuron models with a sparsity prior
    • J. C. Platt, D. Koller, & S. Roweis (Eds.), Cambridge, MA: MIT Press
    • Gerwinn, S., Macke, J., Seeger, M., & Bethge, M. (2008). Bayesian inference for spiking neuron models with a sparsity prior. In J. C. Platt, D. Koller, & S. Roweis (Eds.), Advances in neural information processing systems, 20 (pp. 529-536). Cambridge, MA: MIT Press.
    • (2008) Advances in neural information processing systems , vol.20 , pp. 529-536
    • Gerwinn, S.1    Macke, J.2    Seeger, M.3    Bethge, M.4
  • 33
    • 0030960104 scopus 로고    scopus 로고
    • Encoding of visual motion information and reliability in spiking and graded potential neurons
    • Haag, J., & Borst, A. (1997). Encoding of visual motion information and reliability in spiking and graded potential neurons. Journal of Neuroscience, 17, 4809-4819.
    • (1997) Journal of Neuroscience , vol.17 , pp. 4809-4819
    • Haag, J.1    Borst, A.2
  • 34
    • 0043069766 scopus 로고    scopus 로고
    • Organization of cell assemblies in the hippocampus
    • Harris, K., Csicsvari, J., Hirase, H., Dragoi, G., & Buzsaki, G. (2003). Organization of cell assemblies in the hippocampus. Nature, 424, 552-556.
    • (2003) Nature , vol.424 , pp. 552-556
    • Harris, K.1    Csicsvari, J.2    Hirase, H.3    Dragoi, G.4    Buzsaki, G.5
  • 35
    • 0014944127 scopus 로고
    • Predicting measures of motor performance from multiple cortical spike trains
    • Humphrey, D., Schmidt, E., & Thompson, W. (1970). Predicting measures of motor performance from multiple cortical spike trains. Science, 170, 758-762.
    • (1970) Science , vol.170 , pp. 758-762
    • Humphrey, D.1    Schmidt, E.2    Thompson, W.3
  • 36
    • 33746752672 scopus 로고    scopus 로고
    • Efficient estimation of detailed single-neuron models
    • Huys, Q. J. M., Ahrens, M. B., & Paninski, L. (2006). Efficient estimation of detailed single-neuron models. J. Neurophysiol., 96(2), 872-890.
    • (2006) J. Neurophysiol. , vol.96 , Issue.2 , pp. 872-890
    • Huys, Q.J.M.1    Ahrens, M.B.2    Paninski, L.3
  • 38
    • 0004283231 scopus 로고    scopus 로고
    • Jordan, M. I. (Ed.). Cambridge, MA: MIT Press
    • Jordan, M. I. (Ed.). (1999). Learning in graphical models. Cambridge, MA: MIT Press.
    • (1999) Learning in graphical models
  • 39
    • 23944502754 scopus 로고    scopus 로고
    • Population coding of self-motion: Applying Bayesian analysis to a population of visual interneurons in the fly
    • Karmeier, K., Krapp, H., & Egelhaaf, M. (2005). Population coding of self-motion: Applying Bayesian analysis to a population of visual interneurons in the fly. Journal of Neurophysiology, 94, 2182-2194.
    • (2005) Journal of Neurophysiology , vol.94 , pp. 2182-2194
    • Karmeier, K.1    Krapp, H.2    Egelhaaf, M.3
  • 41
    • 68949150856 scopus 로고    scopus 로고
    • Decoding V1 neuronal activity using particle filtering with Volterra kernels
    • S. Becker, S. Thrün, & K. Obermayer (Eds.), Cambridge, MA: MIT Press
    • Kelly, R., & Lee, T. (2004). Decoding V1 neuronal activity using particle filtering with Volterra kernels. In S. Becker, S. Thrün, & K. Obermayer (Eds.), Advances in neural information processing systems, 15 (pp. 1359-1366). Cambridge, MA: MIT Press.
    • (2004) Advances in neural information processing systems , vol.15 , pp. 1359-1366
    • Kelly, R.1    Lee, T.2
  • 42
  • 43
    • 77956924539 scopus 로고    scopus 로고
    • Efficient computation of the maximum a posteriori path and parameter estimation in integrate-and-fire and more general state-space models
    • Koyama, S., & Paninski, L. (in press). Efficient computation of the maximum a posteriori path and parameter estimation in integrate-and-fire and more general state-space models. Journal of Computational Neuroscience.
    • Journal of Computational Neuroscience
    • Koyama, S.1    Paninski, L.2
  • 44
    • 35448977149 scopus 로고    scopus 로고
    • Common-input models for multiple neural spike-train data
    • Kulkarni, J. E., & Paninski, L. (2007). Common-input models for multiple neural spike-train data. Network: Computation in Neural Systems, 18(4), 375-407.
    • (2007) Network: Computation in Neural Systems , vol.18 , Issue.4 , pp. 375-407
    • Kulkarni, J.E.1    Paninski, L.2
  • 45
    • 19544382559 scopus 로고    scopus 로고
    • Synergy, redundancy, and independence in population codes, revisited
    • Latham, P., & Nirenberg, S. (2005). Synergy, redundancy, and independence in population codes, revisited. J. Neurosci., 25, 5195-5206.
    • (2005) J. Neurosci. , vol.25 , pp. 5195-5206
    • Latham, P.1    Nirenberg, S.2
  • 46
    • 55749099947 scopus 로고    scopus 로고
    • Faithful representation of stimuli with a population of integrate-and-fire neurons
    • Lazar, A. A., & Pnevmatikakis, E. A. (2008). Faithful representation of stimuli with a population of integrate-and-fire neurons. Neural Computation, 20(11), 2715-2744.
    • (2008) Neural Computation , vol.20 , Issue.11 , pp. 2715-2744
    • Lazar, A.A.1    Pnevmatikakis, E.A.2
  • 47
    • 67651065449 scopus 로고    scopus 로고
    • Nonlinear extraction of "independent components", of natural images using radial gaussianization
    • Lyu, S., & Simoncelli, E. P. (2009). Nonlinear extraction of "independent components" of natural images using radial gaussianization. Neural Computation, 21(6), 1485-1519.
    • (2009) Neural Computation , vol.21 , Issue.6 , pp. 1485-1519
    • Lyu, S.1    Simoncelli, E.P.2
  • 51
    • 72749084382 scopus 로고    scopus 로고
    • Influence of context and behavior on stimulus reconstruction from neural activity in primary auditory cortex
    • Mesgarani, N., David, S. V., Fritz, J. B., & Shamma, S. A. (2009). Influence of context and behavior on stimulus reconstruction from neural activity in primary auditory cortex. J. Neurophysiol., 102(6), 3329-3339.
    • (2009) J. Neurophysiol. , vol.102 , Issue.6 , pp. 3329-3339
    • Mesgarani, N.1    David, S.V.2    Fritz, J.B.3    Shamma, S.A.4
  • 53
    • 42749107407 scopus 로고    scopus 로고
    • Entropy and information in neural spike trains: Progress on the sampling problem
    • Nemenman, I., Bialek, W., & de Ruyter van Steveninck, R. (2004). Entropy and information in neural spike trains: Progress on the sampling problem. Physical Review E, 69, 056111.
    • (2004) Physical Review E , vol.69 , pp. 056111
    • Nemenman, I.1    Bialek, W.2    De Ruyter van Steveninck, R.3
  • 54
    • 0141479956 scopus 로고    scopus 로고
    • Chronic, multisite, multielectrode recordings in macaque monkeys
    • Nicolelis, M., Dimitrov, D., Carmena, J., Crist, R., Lehew, G., Kralik, J., et al. (2003). Chronic, multisite, multielectrode recordings in macaque monkeys. PNAS, 100, 11041-11046.
    • (2003) PNAS , vol.100 , pp. 11041-11046
    • Nicolelis, M.1    Dimitrov, D.2    Carmena, J.3    Crist, R.4    Lehew, G.5    Kralik, J.6
  • 55
    • 0041877169 scopus 로고    scopus 로고
    • Estimation of entropy and mutual information
    • Paninski, L. (2003). Estimation of entropy and mutual information. Neural Computation, 15, 1191-1253.
    • (2003) Neural Computation , vol.15 , pp. 1191-1253
    • Paninski, L.1
  • 56
    • 9744274025 scopus 로고    scopus 로고
    • Maximum likelihood estimation of cascade point-process neural encoding models
    • Paninski, L. (2004). Maximum likelihood estimation of cascade point-process neural encoding models. Network: Computation in Neural Systems, 15, 243-262.
    • (2004) Network: Computation in Neural Systems , vol.15 , pp. 243-262
    • Paninski, L.1
  • 57
    • 18744390761 scopus 로고    scopus 로고
    • Asymptotic theory of information-theoretic experimental design
    • Paninski, L. (2005). Asymptotic theory of information-theoretic experimental design. Neural Computation, 17(7), 1480-1507.
    • (2005) Neural Computation , vol.17 , Issue.7 , pp. 1480-1507
    • Paninski, L.1
  • 58
    • 33745863997 scopus 로고    scopus 로고
    • The most likely voltage path and large deviations approximations for integrate-and-fire neurons
    • Paninski, L. (2006). The most likely voltage path and large deviations approximations for integrate-and-fire neurons. Journal of Computational Neuroscience, 21, 71-87.
    • (2006) Journal of Computational Neuroscience , vol.21 , pp. 71-87
    • Paninski, L.1
  • 60
    • 4744360960 scopus 로고    scopus 로고
    • Super-linear population encoding of dynamic hand trajectory in primary motor cortex
    • Paninski, L., Fellows, M., Shoham, S., Hatsopoulos, N., & Donoghue, J. (2004). Super-linear population encoding of dynamic hand trajectory in primary motor cortex. J. Neurosci., 24, 8551-8561.
    • (2004) J. Neurosci. , vol.24 , pp. 8551-8561
    • Paninski, L.1    Fellows, M.2    Shoham, S.3    Hatsopoulos, N.4    Donoghue, J.5
  • 61
    • 34848820532 scopus 로고    scopus 로고
    • Statistical models for neural encoding, decoding, and optimal stimulus design
    • P. Cisek, T. Drew, & J. Kalaska (Eds.), Amsterdam: Elsevier
    • Paninski, L., Pillow, J. W., & Lewi, J. (2007). Statistical models for neural encoding, decoding, and optimal stimulus design. In P. Cisek, T. Drew, & J. Kalaska (Eds.), Computational neuroscience: Theoretical insights into brain function (pp. 493-507). Amsterdam: Elsevier.
    • (2007) Computational neuroscience: Theoretical insights into brain function , pp. 493-507
    • Paninski, L.1    Pillow, J.W.2    Lewi, J.3
  • 62
    • 9744239998 scopus 로고    scopus 로고
    • Maximum likelihood estimation of a stochastic integrate-and-fire neural model
    • Paninski, L., Pillow, J. W., & Simoncelli, E. P. (2004). Maximum likelihood estimation of a stochastic integrate-and-fire neural model. Neural Computation, 16, 2533-2561.
    • (2004) Neural Computation , vol.16 , pp. 2533-2561
    • Paninski, L.1    Pillow, J.W.2    Simoncelli, E.P.3
  • 63
    • 18144381247 scopus 로고    scopus 로고
    • Comparing integrate-and-fire-like models estimated using intracellular and extracellular data
    • Paninski, L., Pillow, J. W., & Simoncelli, E. P. (2005). Comparing integrate-and-fire-like models estimated using intracellular and extracellular data. Neurocomputing, 65-66, 379-385.
    • (2005) Neurocomputing , vol.65 , Issue.66 , pp. 379-385
    • Paninski, L.1    Pillow, J.W.2    Simoncelli, E.P.3
  • 64
    • 1342322843 scopus 로고    scopus 로고
    • Information transmission rates of cat retinal ganglion cells
    • Passaglia, C., & Troy, J. (2004). Information transmission rates of cat retinal ganglion cells. Journal of Neurophysiology, 91, 1217-1229.
    • (2004) Journal of Neurophysiology , vol.91 , pp. 1217-1229
    • Passaglia, C.1    Troy, J.2
  • 65
    • 78650611326 scopus 로고    scopus 로고
    • Time-rescaling methods for the estimation and assessment of non-poisson neural encoding models
    • Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Cambridge, MA: MIT Press
    • Pillow, J. (2009). Time-rescaling methods for the estimation and assessment of non-poisson neural encoding models. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Advances in neural information processing systems, 22 (pp. 1473-1481). Cambridge, MA: MIT Press.
    • (2009) Advances in neural information processing systems , vol.22 , pp. 1473-1481
    • Pillow, J.1
  • 66
    • 84898953402 scopus 로고    scopus 로고
    • Maximum likelihood estimation of a stochastic integrate-and-fire neural model
    • S. Thrün, L. K. Saul, & B. Schölkopf (Eds.), Cambridge, MA: MIT Press
    • Pillow, J. W., Paninski, L., & Simoncelli, E. P. (2004). Maximum likelihood estimation of a stochastic integrate-and-fire neural model. In S. Thrün, L. K. Saul, & B. Schölkopf (Eds.), Advances in neural information processing systems, 16. Cambridge, MA: MIT Press.
    • (2004) Advances in neural information processing systems , vol.16
    • Pillow, J.W.1    Paninski, L.2    Simoncelli, E.P.3
  • 67
    • 28044458279 scopus 로고    scopus 로고
    • Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model
    • Pillow, J. W., Paninski, L., Uzzell, V. J., Simoncelli, E. P., & Chichilnisky, E. J. (2005). Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. Journal of Neuroscience, 25, 11003-11013.
    • (2005) Journal of Neuroscience , vol.25 , pp. 11003-11013
    • Pillow, J.W.1    Paninski, L.2    Uzzell, V.J.3    Simoncelli, E.P.4    Chichilnisky, E.J.5
  • 68
    • 50049100348 scopus 로고    scopus 로고
    • Spatio-temporal correlations and visual signaling in a complete neuronal population
    • Pillow, J. W., Shlens, J., Paninski, L., Sher, A., Litke, A. M., Chichilnisky, E. J., et al. (2008). Spatio-temporal correlations and visual signaling in a complete neuronal population. Nature, 454, 995-999.
    • (2008) Nature , vol.454 , pp. 995-999
    • Pillow, J.W.1    Shlens, J.2    Paninski, L.3    Sher, A.4    Litke, A.M.5    Chichilnisky, E.J.6
  • 69
    • 0013398976 scopus 로고    scopus 로고
    • Biases in white noise analysis due to non-Poisson spike generation
    • Pillow, J. W., & Simoncelli, E. P. (2003). Biases in white noise analysis due to non-Poisson spike generation. Neurocomputing, 52, 109-115.
    • (2003) Neurocomputing , vol.52 , pp. 109-115
    • Pillow, J.W.1    Simoncelli, E.P.2
  • 70
    • 33646673326 scopus 로고    scopus 로고
    • Dimensionality reduction in neural models: An information-theoretic generalization of spike-triggered average and covariance analysis
    • Pillow, J. W., & Simoncelli, E. P. (2006). Dimensionality reduction in neural models: An information-theoretic generalization of spike-triggered average and covariance analysis. Journal of Vision, 6(4), 414-428.
    • (2006) Journal of Vision , vol.6 , Issue.4 , pp. 414-428
    • Pillow, J.W.1    Simoncelli, E.P.2
  • 71
    • 0034133323 scopus 로고    scopus 로고
    • Noise in integrate-and-fire neurons: From stochastic input to escape rates
    • Plesser, H., & Gerstner, W. (2000). Noise in integrate-and-fire neurons: From stochastic input to escape rates. Neural Computation, 12, 367-384.
    • (2000) Neural Computation , vol.12 , pp. 367-384
    • Plesser, H.1    Gerstner, W.2
  • 74
    • 42149195907 scopus 로고    scopus 로고
    • Bayesian modelling and analysis of spatio-temporal neuronal networks
    • Rigat, F., de Gunst, M., & van Pelt, J. (2006). Bayesian modelling and analysis of spatio-temporal neuronal networks. Bayesian Analysis, 1(4), 733-764.
    • (2006) Bayesian Analysis , vol.1 , Issue.4 , pp. 733-764
    • Rigat, F.1    de Gunst, M.2    van Pelt, J.3
  • 76
    • 78650625459 scopus 로고    scopus 로고
    • Presented at the NIPS00 workshop on Information and Statistical Structure in Spike Trains, Vancouver, BC
    • Sahani, M. (2000). Kernel regression for neural systems identification. Presented at the NIPS00 workshop on Information and Statistical Structure in Spike Trains, Vancouver, BC.
    • (2000) Kernel regression for neural systems identification
    • Sahani, M.1
  • 78
    • 0001807778 scopus 로고
    • Theoretical considerations for the analysis of population coding in motor cortex
    • Sanger, T. (1994). Theoretical considerations for the analysis of population coding in motor cortex. Neural Computation, 6, 12-21.
    • (1994) Neural Computation , vol.6 , pp. 12-21
    • Sanger, T.1
  • 82
    • 0345768782 scopus 로고    scopus 로고
    • Analyzing neural responses to natural signals: Maximally informative dimensions
    • Sharpee, T., Rust, N., & Bialek, W. (2004). Analyzing neural responses to natural signals: Maximally informative dimensions. Neural Computation, 16, 223-250.
    • (2004) Neural Computation , vol.16 , pp. 223-250
    • Sharpee, T.1    Rust, N.2    Bialek, W.3
  • 84
    • 13844293348 scopus 로고    scopus 로고
    • Spikernels: Embedding spike neurons in inner product spaces
    • S. Becker, S. Thrün, & K. Obermayer (Eds.), Cambridge MA: MIT Press
    • Shpigelman, L., Singer, Y., Paz, R., & Vaadia, E. (2003). Spikernels: Embedding spike neurons in inner product spaces. In S. Becker, S. Thrün, & K. Obermayer (Eds.), Advances in neural information processing system, 15. Cambridge MA: MIT Press.
    • (2003) Advances in neural information processing system , vol.15
    • Shpigelman, L.1    Singer, Y.2    Paz, R.3    Vaadia, E.4
  • 85
    • 84882847280 scopus 로고    scopus 로고
    • Statistical modeling of photographic images
    • A. Bovik (Ed.), (2nd ed.,). Orlando, FL: Academic Press
    • Simoncelli, E. P. (2005). Statistical modeling of photographic images. In A. Bovik (Ed.), Handbook of image and video processing (2nd ed., pp. 431-441). Orlando, FL: Academic Press.
    • (2005) Handbook of image and video processing , pp. 431-441
    • Simoncelli, E.P.1
  • 86
    • 2542438416 scopus 로고    scopus 로고
    • Characterization of neural responses with stochastic stimuli
    • M. Gazzaniga (Ed.), (3rd ed.,). Cambridge, MA: MIT Press
    • Simoncelli, E. P., Paninski, L., Pillow, J., & Schwartz, O. (2004). Characterization of neural responses with stochastic stimuli. In M. Gazzaniga (Ed.), The cognitive neurosciences (3rd ed., pp. 327-338). Cambridge, MA: MIT Press.
    • (2004) The cognitive neurosciences , pp. 327-338
    • Simoncelli, E.P.1    Paninski, L.2    Pillow, J.3    Schwartz, O.4
  • 87
    • 33749446319 scopus 로고    scopus 로고
    • A state-space analysis for reconstruction of goal-directed movements using neural signals
    • Srinivasan, L., Eden, U., Willsky, A., & Brown, E. (2006). A state-space analysis for reconstruction of goal-directed movements using neural signals. Neural Computation, 18, 2465-2494.
    • (2006) Neural Computation , vol.18 , pp. 2465-2494
    • Srinivasan, L.1    Eden, U.2    Willsky, A.3    Brown, E.4
  • 91
    • 0029924134 scopus 로고    scopus 로고
    • Information theoretic analysis of dynamical encoding by four primary sensory interneurons in the cricket cercal system
    • Theunissen, F., Roddey, J., Stufflebeam, S., Clague, H., & Miller, J. (1996). Information theoretic analysis of dynamical encoding by four primary sensory interneurons in the cricket cercal system. Journal of Neurophysiology, 75, 1345-1364.
    • (1996) Journal of Neurophysiology , vol.75 , pp. 1345-1364
    • Theunissen, F.1    Roddey, J.2    Stufflebeam, S.3    Clague, H.4    Miller, J.5
  • 92
    • 12544253489 scopus 로고    scopus 로고
    • A point process framework for relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects
    • Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P., & Brown, E. N. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects. J. Neurophysiol, 93(2), 1074-1089.
    • (2005) J. Neurophysiol , vol.93 , Issue.2 , pp. 1074-1089
    • Truccolo, W.1    Eden, U.T.2    Fellows, M.R.3    Donoghue, J.P.4    Brown, E.N.5
  • 93
    • 73949086190 scopus 로고    scopus 로고
    • Collective dynamics in human and monkey sensorimotor cortex: Predicting single neuron spikes
    • Truccolo, W., Hochberg, L., & Donoghue, J. (2010). Collective dynamics in human and monkey sensorimotor cortex: Predicting single neuron spikes. Nature Neuroscience, 13, 105-111.
    • (2010) Nature Neuroscience , vol.13 , pp. 105-111
    • Truccolo, W.1    Hochberg, L.2    Donoghue, J.3
  • 94
    • 0030686449 scopus 로고    scopus 로고
    • Decoding visual information from a population of retinal ganglion cells
    • Warland, D., Reinagel, P., & Meister, M. (1997). Decoding visual information from a population of retinal ganglion cells. Journal of Neurophysiology, 78, 2336-2350.
    • (1997) Journal of Neurophysiology , vol.78 , pp. 2336-2350
    • Warland, D.1    Reinagel, P.2    Meister, M.3
  • 97
    • 54249147446 scopus 로고    scopus 로고
    • Neural decoding of movements: From linear to nonlinear trajectory models
    • M. Ishikawa, K. Doya, H. Miyamoto, & T. Yamakawa (Eds.), Berlin: Springer
    • Yu, B. M., Cunningham, J. P., Shenoy, K. V., & Sahani, M. (2007). Neural decoding of movements: From linear to nonlinear trajectory models. In M. Ishikawa, K. Doya, H. Miyamoto, & T. Yamakawa (Eds.), Neural information processing (ICONIP 2007) (pp. 586-595). Berlin: Springer.
    • (2007) Neural information processing (ICONIP 2007) , pp. 586-595
    • Yu, B.M.1    Cunningham, J.P.2    Shenoy, K.V.3    Sahani, M.4
  • 98
    • 0031930592 scopus 로고    scopus 로고
    • Interpreting neuronal population activity by reconstruction: Unified framework with application to hippocampal place cells
    • Zhang, K., Ginzburg, I., McNaughton, B., & Sejnowski, T. (1998). Interpreting neuronal population activity by reconstruction: Unified framework with application to hippocampal place cells. Journal of Neurophysiology, 79, 1017-1044.
    • (1998) Journal of Neurophysiology , vol.79 , pp. 1017-1044
    • Zhang, K.1    Ginzburg, I.2    Mcnaughton, B.3    Sejnowski, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.