메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1473-1481

Time-rescaling methods for the estimation and assessment of non-Poisson neural encoding models

Author keywords

[No Author keywords available]

Indexed keywords

NEURAL NETWORKS; SIGNAL ENCODING;

EID: 78650611326     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (26)

References (24)
  • 1
    • 0036482863 scopus 로고    scopus 로고
    • The time-rescaling theorem and its application to neural spike train data analysis
    • E. Brown, R. Barbieri, V. Ventura, R. Kass, and L. Frank. The time-rescaling theorem and its application to neural spike train data analysis. Neural Computation, 14:325-346, 2002.
    • (2002) Neural Computation , vol.14 , pp. 325-346
    • Brown, E.1    Barbieri, R.2    Ventura, V.3    Kass, R.4    Frank, L.5
  • 2
    • 0013028436 scopus 로고    scopus 로고
    • A simple white noise analysis of neuronal light responses
    • E. J. Chichilnisky. A simple white noise analysis of neuronal light responses. Network: Computation in Neural Systems, 12:199-213, 2001.
    • (2001) Network: Computation in Neural Systems , vol.12 , pp. 199-213
    • Chichilnisky, E.J.1
  • 3
    • 0003436477 scopus 로고    scopus 로고
    • Characterization of neural responses with stochastic stimuli
    • M. Gazzaniga, editor chapter 23 MIT Press
    • E. P. Simoncelli, L. Paninski, J. W. Pillow, and O. Schwartz. Characterization of neural responses with stochastic stimuli. In M. Gazzaniga, editor, The Cognitive Neurosciences, III, chapter 23, pages 327-338. MIT Press, 2004.
    • (2004) The Cognitive Neurosciences , vol.3 , pp. 327-338
    • Simoncelli, E.P.1    Paninski, L.2    Pillow, J.W.3    Schwartz, O.4
  • 4
    • 0032521364 scopus 로고    scopus 로고
    • Refractoriness and neural precision
    • M. Berry and M. Meister. Refractoriness and neural precision. Journal of Neuroscience, 18:2200-2211, 1998.
    • (1998) Journal of Neuroscience , vol.18 , pp. 2200-2211
    • Berry, M.1    Meister, M.2
  • 5
    • 0034161415 scopus 로고    scopus 로고
    • Interspike intervals, receptive fields, and information encoding in primary visual cortex
    • Daniel S. Reich, Ferenc Mechler, Keith P. Purpura, and Jonathan D. Victor. Interspike intervals, receptive fields, and information encoding in primary visual cortex. J. Neurosci., 20(5):1964-1974, 2000.
    • (2000) J. Neurosci. , vol.20 , Issue.5 , pp. 1964-1974
    • Reich, D.S.1    Mechler, F.2    Purpura, K.P.3    Victor, J.D.4
  • 6
    • 0033714122 scopus 로고    scopus 로고
    • Adaptive rescaling optimizes information transmission
    • N. Brenner, W. Bialek, and R. de Ruyter van Steveninck. Adaptive rescaling optimizes information transmission. Neuron, 26:695-702, 2000.
    • (2000) Neuron , vol.26 , pp. 695-702
    • Brenner, N.1    Bialek, W.2    De Ruyter Van Steveninck, R.3
  • 7
    • 0033630628 scopus 로고    scopus 로고
    • Population dynamics of spiking neurons: Fast transients, asynchronous states, and locking
    • W. Gerstner. Population dynamics of spiking neurons: Fast transients, asynchronous states, and locking. Neural Computation, 12(1):43-89, 2000.
    • (2000) Neural Computation , vol.12 , Issue.1 , pp. 43-89
    • Gerstner, W.1
  • 8
    • 0034662092 scopus 로고    scopus 로고
    • Temporal coding of visual information in the thalamus
    • P. Reinagel and R. C. Reid. Temporal coding of visual information in the thalamus. Journal of Neuroscience, 20:5392-5400, 2000.
    • (2000) Journal of Neuroscience , vol.20 , pp. 5392-5400
    • Reinagel, P.1    Reid, R.C.2
  • 12
    • 0001678039 scopus 로고
    • Inhomogeneous and modulated gamma processes
    • M. Berman. Inhomogeneous and modulated gamma processes. Biometrika, 68(1):143-152, 1981.
    • (1981) Biometrika , vol.68 , Issue.1 , pp. 143-152
    • Berman, M.1
  • 13
    • 0035970024 scopus 로고    scopus 로고
    • Construction and analysis of non-poisson stimulus-response models of neural spiking activity
    • R. Barbieri, M.C. Quirk, L.M. Frank, M.A. Wilson, and E.N. Brown. Construction and analysis of non-poisson stimulus-response models of neural spiking activity. Journal of Neuroscience Methods, 105(1):25-37, 2001.
    • (2001) Journal of Neuroscience Methods , vol.105 , Issue.1 , pp. 25-37
    • Barbieri, R.1    Quirk, M.C.2    Frank, L.M.3    Wilson, M.A.4    Brown, E.N.5
  • 14
    • 28844453515 scopus 로고    scopus 로고
    • A nonparametric approach to extract information from interspike interval data
    • E. Rossoni and J. Feng. A nonparametric approach to extract information from interspike interval data. Journal of neuroscience methods, 150(1):30-40, 2006.
    • (2006) Journal of Neuroscience Methods , vol.150 , Issue.1 , pp. 30-40
    • Rossoni, E.1    Feng, J.2
  • 15
    • 56449106538 scopus 로고    scopus 로고
    • Information transmission in oscillatory neural activity
    • K. Koepsell and F.T. Sommer. Information transmission in oscillatory neural activity. Biological Cybernetics, 99(4):403-416, 2008.
    • (2008) Biological Cybernetics , vol.99 , Issue.4 , pp. 403-416
    • Koepsell, K.1    Sommer, F.T.2
  • 16
    • 0035432526 scopus 로고    scopus 로고
    • A spike-train probability model
    • R.E. Kass and V. Ventura. A spike-train probability model. Neural computation, 13(8):1713-1720, 2001.
    • (2001) Neural Computation , vol.13 , Issue.8 , pp. 1713-1720
    • Kass, R.E.1    Ventura, V.2
  • 17
    • 12544253489 scopus 로고    scopus 로고
    • A point process framework for relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects
    • W. Truccolo, U. T. Eden, M. R. Fellows, J. P. Donoghue, and E. N. Brown. A point process framework for relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects. J. Neurophysiol, 93(2):1074-1089, 2005.
    • (2005) J. Neurophysiol , vol.93 , Issue.2 , pp. 1074-1089
    • Truccolo, W.1    Eden, U.T.2    Fellows, M.R.3    Donoghue, J.P.4    Brown, E.N.5
  • 21
    • 9744274025 scopus 로고    scopus 로고
    • Maximum likelihood estimation of cascade point-process neural encoding models
    • L. Paninski. Maximum likelihood estimation of cascade point-process neural encoding models. Network: Computation in Neural Systems, 15:243-262, 2004.
    • (2004) Network: Computation in Neural Systems , vol.15 , pp. 243-262
    • Paninski, L.1
  • 22
    • 63649096237 scopus 로고    scopus 로고
    • Likelihood-based approaches to modeling the neural code
    • K. Doya, S. Ishii, A. Pouget, and R. P. Rao, editors MIT Press
    • J. W. Pillow. Likelihood-based approaches to modeling the neural code. In K. Doya, S. Ishii, A. Pouget, and R. P. Rao, editors, Bayesian Brain: Probabilistic Approaches to Neural Coding, pages 53-70. MIT Press, 2007.
    • (2007) Bayesian Brain: Probabilistic Approaches to Neural Coding , pp. 53-70
    • Pillow, J.W.1
  • 23
    • 51649105932 scopus 로고    scopus 로고
    • Using convex optimization for nonparametric statistical analysis of point processes
    • 2007. ISIT 2007
    • T.P. Coleman and S. Sarma. Using convex optimization for nonparametric statistical analysis of point processes. In IEEE International Symposium on Information Theory, 2007. ISIT 2007, pages 1476-1480, 2007.
    • (2007) IEEE International Symposium on Information Theory , pp. 1476-1480
    • Coleman, T.P.1    Sarma, S.2
  • 24
    • 4744360960 scopus 로고    scopus 로고
    • Superlinear population encoding of dynamic hand trajectory in primary motor cortex
    • L. Paninski, M. Fellows, S. Shoham, N. Hatsopoulos, and J. Donoghue. Superlinear population encoding of dynamic hand trajectory in primary motor cortex. J. Neurosci., 24:8551-8561, 2004.
    • (2004) J. Neurosci. , vol.24 , pp. 8551-8561
    • Paninski, L.1    Fellows, M.2    Shoham, S.3    Hatsopoulos, N.4    Donoghue, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.