-
1
-
-
0025870306
-
-
W. Bialek, F. Rieke, R. R. de Ruyter van Steveninck, and D. Warland, Science 252, 1854 (1991).
-
(1991)
Science
, vol.252
, pp. 1854
-
-
Bialek, W.1
Rieke, F.2
De Ruyter Van Steveninck, R.R.3
Warland, D.4
-
4
-
-
0000989527
-
-
S. P. Strong, R. Koberle, R. R. de Ruyter van Steveninck, and W. Bialek, Phys. Rev. Lett. 80, 197 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 197
-
-
Strong, S.P.1
Koberle, R.2
De Ruyter Van Steveninck, R.R.3
Bialek, W.4
-
6
-
-
0034222403
-
-
N. Brenner, S. P. Strong, R. Koberle, W. Bialek, and R. R. de Ruyter van Steveninck, Neural Comput. 12, 1531 (2000).
-
(2000)
Neural Comput.
, vol.12
, pp. 1531
-
-
Brenner, N.1
Strong, S.P.2
Koberle, R.3
Bialek, W.4
De Ruyter Van Steveninck, R.R.5
-
9
-
-
0003634127
-
-
MIT Press, Cambridge, MA
-
F. Rieke, D. Warland, R. de Ruyter van Steveninck, and W. Bialek, Spikes: Exploring the Neural Code (MIT Press, Cambridge, MA, 1997).
-
(1997)
Spikes: Exploring the Neural Code
-
-
Rieke, F.1
Warland, D.2
De Ruyter Van Steveninck, R.3
Bialek, W.4
-
11
-
-
0001979913
-
-
edited by D. V. Blake and A. M. Uttley H. M. Stationery Office, London
-
H. B. Barlow, in Proceedings of the Symposium on the Mechanization of Thought Processes, edited by D. V. Blake and A. M. Uttley (H. M. Stationery Office, London, 1959), Vol. 2, pp. 537-574.
-
(1959)
Proceedings of the Symposium on the Mechanization of Thought Processes
, vol.2
, pp. 537-574
-
-
Barlow, H.B.1
-
12
-
-
0002014402
-
-
edited by W. Rosenblith MIT Press, Cambridge, MA
-
H. B. Barlow, in Sensory Communication, edited by W. Rosenblith (MIT Press, Cambridge, MA, 1961), pp. 217-234.
-
(1961)
Sensory Communication
, pp. 217-234
-
-
Barlow, H.B.1
-
15
-
-
0035939908
-
-
A. L. Fairhall, G. D. Lewen, W. Bialek, and R. R. de Ruyter van Steveninck, Nature (London) 412, 787 (2001).
-
(2001)
Nature (London)
, vol.412
, pp. 787
-
-
Fairhall, A.L.1
Lewen, G.D.2
Bialek, W.3
De Ruyter Van Steveninck, R.R.4
-
17
-
-
0030938069
-
-
R. R. de Ruyter van Steveninck, G. D. Lewen, S. P. Strong, R. Koberle, and W. Bialek, Science 275, 1805 (1997).
-
(1997)
Science
, vol.275
, pp. 1805
-
-
De Ruyter Van Steveninck, R.R.1
Lewen, G.D.2
Strong, S.P.3
Koberle, R.4
Bialek, W.5
-
21
-
-
84898931392
-
-
edited by T. G. Dietterich, S. Becker, and Z. Ghahramani MIT Press, Cambridge, MA
-
I. Nemenman, F. Shafee, and W. Bialek, in Advances in Neural Information Processing Systems 14, edited by T. G. Dietterich, S. Becker, and Z. Ghahramani (MIT Press, Cambridge, MA, 2002).
-
(2002)
Advances in Neural Information Processing Systems
, vol.14
-
-
Nemenman, I.1
Shafee, F.2
Bialek, W.3
-
23
-
-
33645069756
-
-
T. Batu, S. Dasgupta, R. Kumar, and R. Rubinfeld, in Proceedings of the 34th Symposium on Theory Computing, ACM, 2002.
-
(2002)
Proceedings of the 34th Symposium on Theory Computing, ACM
-
-
Batu, T.1
Dasgupta, S.2
Kumar, R.3
Rubinfeld, R.4
-
24
-
-
0005770331
-
-
Free Press, Glencoe, IL
-
G. A. Miller, in Information Theory in Psychology; Problems and Methods II-B, edited by H. Quastler (Free Press, Glencoe, IL, 1955), pp. 95-100.
-
(1955)
Information Theory in Psychology; Problems and Methods II-B, Edited by H. Quastler
, pp. 95-100
-
-
Miller, G.A.1
-
29
-
-
33645079480
-
-
e-print physics/0207009
-
I. Nemenman, e-print physics/0207009.
-
-
-
Nemenman, I.1
-
32
-
-
33645050489
-
-
Ph.D. thesis, Princeton University
-
I. Nemenman, Ph.D. thesis, Princeton University, 2000.
-
(2000)
-
-
Nemenman, I.1
-
34
-
-
33645051555
-
-
edited by J. van Hemmen, J. D. Cowan, and E. Domany Springer-Verlag, Heidelberg, New York, see Fig. 17
-
R. de Ruyter van Steveninck and W. Bialek, in Methods in Neural Networks IV, edited by J. van Hemmen, J. D. Cowan, and E. Domany (Springer-Verlag, Heidelberg, New York, 2001), pp. 313-371 (see Fig. 17).
-
(2001)
Methods in Neural Networks IV
, pp. 313-371
-
-
De Ruyter Van Steveninck, R.1
Bialek, W.2
-
35
-
-
33645060283
-
-
note
-
In reference to Bayesian estimators, consistency usually means that, as N grows, the posterior probability concentrates around unknown parameters of the true model that generated the data. For finite parameter models, such as the one considered here, only technical assumptions like positivity of the prior for all parameter values, soundness (different parameters always correspond to different distributions) [31], and a few others are needed for consistency. For nonparametric models, the situation is more complicated. There one also needs ultraviolet convergence of the functional integrals defined by the prior [32,33].
-
-
-
-
36
-
-
33645052800
-
-
note
-
It may happen that information is a small difference between two large entropies. Then, due to statistical errors, methods that estimate information directly will have an advantage over NSB, which estimates entropies first. In our case, this is not a problem since the information is roughly a half of the total available entropy [4].
-
-
-
-
37
-
-
33645077959
-
-
note
-
For our and many other neural systems, the spike timing can be more accurate than the refractory period of roughly 2 ms [6,10,34]. For the current amount of data, discretization of l ms and large enough T will push the limits of all estimation methods, including ours, that do not make explicit assumptions about properties of the spike trains. Thus, to have enough statistics to convincingly show validity of the NSB approach, in this paper we choose τ=0.75...2 ms, which is still much shorter than other methods can handle. We leave open the possibility that more information is contained in timing precision at finer scales.
-
-
-
|