메뉴 건너뛰기




Volumn 15, Issue 4, 2004, Pages 243-262

Maximum likelihood estimation of cascade point-process neural encoding models

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY; ALGORITHM; ARTICLE; ARTIFICIAL NEURAL NETWORK; BAYES THEOREM; COMPUTER ANALYSIS; MAXIMUM LIKELIHOOD METHOD; NONLINEAR SYSTEM; PREDICTION; PROCESS MODEL; SAMPLING;

EID: 9744274025     PISSN: 0954898X     EISSN: None     Source Type: Journal    
DOI: 10.1088/0954-898X_15_4_002     Document Type: Article
Times cited : (404)

References (61)
  • 1
    • 0034623811 scopus 로고    scopus 로고
    • The contribution of noise to contrast invariance of orientation tuning in cat visual cortex
    • Anderson J, Lampl I, Gillespie D and Ferster D 2000 The contribution of noise to contrast invariance of orientation tuning in cat visual cortex Science 290 1968-72
    • (2000) Science , vol.290 , pp. 1968-1972
    • Anderson, J.1    Lampl, I.2    Gillespie, D.3    Ferster, D.4
  • 3
    • 0032521364 scopus 로고    scopus 로고
    • Refractoriness and neural precision
    • Berry M and Meister M 1998 Refractoriness and neural precision J. Neurosci. 18 2200-11
    • (1998) J. Neurosci. , vol.18 , pp. 2200-2211
    • Berry, M.1    Meister, M.2
  • 4
    • 0033714122 scopus 로고    scopus 로고
    • Adaptive rescaling optimizes information transmission
    • Brenner N, Bialek W and de Ruyter van Steveninck R 2001 Adaptive rescaling optimizes information transmission Neuron 26 695-702
    • (2001) Neuron , vol.26 , pp. 695-702
    • Brenner, N.1    Bialek, W.2    De Ruyter Van Steveninck, R.3
  • 5
    • 0036482863 scopus 로고    scopus 로고
    • The time-rescaling theorem and its application to neural spike-train data analysis
    • Brown E, Barbieri R, Ventura V, Kass R and Frank L 2002 The time-rescaling theorem and its application to neural spike-train data analysis Neural Computation 14 325-46
    • (2002) Neural Computation , vol.14 , pp. 325-346
    • Brown, E.1    Barbieri, R.2    Ventura, V.3    Kass, R.4    Frank, L.5
  • 6
    • 0004128622 scopus 로고
    • Crosscorrelation functions of amplitude-distorted Gaussian signals
    • Bussgang J 1952 Crosscorrelation functions of amplitude-distorted Gaussian signals RLE Tech. Rep. 216
    • (1952) RLE Tech. Rep. , pp. 216
    • Bussgang, J.1
  • 7
    • 0013028436 scopus 로고    scopus 로고
    • A simple white noise analysis of neuronal light responses
    • Chichilnisky E 2001 A simple white noise analysis of neuronal light responses Network: Comput. Neural Syst. 12 199-213
    • (2001) Network: Comput. Neural Syst. , vol.12 , pp. 199-213
    • Chichilnisky, E.1
  • 10
    • 0037063251 scopus 로고    scopus 로고
    • Identification of nonlinear time series via kernels
    • Dodd T and Harris C 2002 Identification of nonlinear time series via kernels Int. J. Syst. Sci. 33 737-50
    • (2002) Int. J. Syst. Sci. , vol.33 , pp. 737-750
    • Dodd, T.1    Harris, C.2
  • 11
    • 0036828974 scopus 로고    scopus 로고
    • Connecting cortex to machines: Recent advances in brain interfaces
    • Donoghue J 2002 Connecting cortex to machines: recent advances in brain interfaces Nature Neurosci. 5 1085-8
    • (2002) Nature Neurosci. , vol.5 , pp. 1085-1088
    • Donoghue, J.1
  • 13
    • 38249039721 scopus 로고
    • A characterization of spherical distributions
    • Eaton M 1986 A characterization of spherical distributions J. Multivariate Anal. 20 272-6
    • (1986) J. Multivariate Anal. , vol.20 , pp. 272-276
    • Eaton, M.1
  • 15
    • 0000017485 scopus 로고
    • Maximum likelihood estimation in exponential response models
    • Haberman S 1977 Maximum likelihood estimation in exponential response models Ann. Stat. 5 815-41
    • (1977) Ann. Stat. , vol.5 , pp. 815-841
    • Haberman, S.1
  • 16
    • 0037365779 scopus 로고    scopus 로고
    • Permitted and forbidden sets in symmetric threshold-linear networks
    • Hahnloser R, Seung S and Slotine J 2003 Permitted and forbidden sets in symmetric threshold-linear networks Neural Computation 15 621-38
    • (2003) Neural Computation , vol.15 , pp. 621-638
    • Hahnloser, R.1    Seung, S.2    Slotine, J.3
  • 19
    • 0031064259 scopus 로고    scopus 로고
    • Modeling stochastic spike-train responses of neurons: An extended Wiener series analysis of pigeon auditory nerve fibers
    • Joeken S, Schwegler H and Richter C 1997 Modeling stochastic spike-train responses of neurons: an extended Wiener series analysis of pigeon auditory nerve fibers Biol. Cybern. 76 153-62
    • (1997) Biol. Cybern. , vol.76 , pp. 153-162
    • Joeken, S.1    Schwegler, H.2    Richter, C.3
  • 21
    • 0034972776 scopus 로고    scopus 로고
    • Predicting every spike: A model for the responses of visual neurons
    • Keat J, Reinagel P, Reid R and Meister M 2001 Predicting every spike: a model for the responses of visual neurons Neuron 30 803-17
    • (2001) Neuron , vol.30 , pp. 803-817
    • Keat, J.1    Reinagel, P.2    Reid, R.3    Meister, M.4
  • 23
    • 0001017987 scopus 로고
    • Regression analysis under link violation
    • Li K and Duan N 1989 Regression analysis under link violation Ann. Stat. 17 1009-52
    • (1989) Ann. Stat. , vol.17 , pp. 1009-1052
    • Li, K.1    Duan, N.2
  • 25
    • 0029030249 scopus 로고
    • Reliability of spike timing in neocortical neurons
    • Mainen Z and Sejnowski T 1995 Reliability of spike timing in neocortical neurons Science 268 1503-6
    • (1995) Science , vol.268 , pp. 1503-1506
    • Mainen, Z.1    Sejnowski, T.2
  • 29
    • 0036089723 scopus 로고    scopus 로고
    • Neural noise can explain expansive, power-law nonlinearities in neural response functions
    • Miller K and Troyer T 2002 Neural noise can explain expansive, power-law nonlinearities in neural response functions J. Neurophysiol. 87 653-9
    • (2002) J. Neurophysiol. , vol.87 , pp. 653-659
    • Miller, K.1    Troyer, T.2
  • 32
    • 29144465381 scopus 로고    scopus 로고
    • Reconstructing stimulus-driven neural networks from spike times
    • Nykamp D 2003 Reconstructing stimulus-driven neural networks from spike times Neural Information Processing Systems vol 15, pp 309-16
    • (2003) Neural Information Processing Systems , vol.15 , pp. 309-316
    • Nykamp, D.1
  • 33
    • 0347423195 scopus 로고    scopus 로고
    • Convergence properties of some spike-triggered analysis techniques
    • Paninski L 2003 Convergence properties of some spike-triggered analysis techniques Netw. Comput. Neural Syst. 14 437-64
    • (2003) Netw. Comput. Neural Syst. , vol.14 , pp. 437-464
    • Paninski, L.1
  • 34
    • 0347088824 scopus 로고    scopus 로고
    • Spatiotemporal tuning properties for hand position and velocity in motor cortical neurons
    • Paninski L, Fellows M, Hatsopoulos N and Donoghue J 2004a Spatiotemporal tuning properties for hand position and velocity in motor cortical neurons J. Neurophysiol. 91 515-32
    • (2004) J. Neurophysiol. , vol.91 , pp. 515-532
    • Paninski, L.1    Fellows, M.2    Hatsopoulos, N.3    Donoghue, J.4
  • 36
    • 0038118574 scopus 로고    scopus 로고
    • Noise-driven adaptation: In vitro and mathematical analysis
    • Paninski L, Lau B and Reyes A 2003 Noise-driven adaptation: in vitro and mathematical analysis Neurocomputing 52 877-83
    • (2003) Neurocomputing , vol.52 , pp. 877-883
    • Paninski, L.1    Lau, B.2    Reyes, A.3
  • 37
    • 9744226913 scopus 로고    scopus 로고
    • Comparing integrate-and-fire-like models estimated using intracellular and extracellular data
    • at press
    • Paninski L, Pillow J and Simoncelli E 2004c Comparing integrate-and-fire-like models estimated using intracellular and extracellular data Neurocomputing at press
    • (2004) Neurocomputing
    • Paninski, L.1    Pillow, J.2    Simoncelli, E.3
  • 38
    • 9744239998 scopus 로고    scopus 로고
    • Maximum likelihood estimation of a stochastic integrate-and-fire neural model
    • at press
    • Paninski L, Pillow J and Simoncelli E 2004d Maximum likelihood estimation of a stochastic integrate-and-fire neural model Neural Computation at press
    • (2004) Neural Computation
    • Paninski, L.1    Pillow, J.2    Simoncelli, E.3
  • 39
    • 0034133323 scopus 로고    scopus 로고
    • Noise in integrate-and-fire neurons: From stochastic input to escape rates
    • Plesser H and Gerstner W 2000 Noise in integrate-and-fire neurons: from stochastic input to escape rates Neural Computation 12 367-84
    • (2000) Neural Computation , vol.12 , pp. 367-384
    • Plesser, H.1    Gerstner, W.2
  • 40
    • 0032402153 scopus 로고    scopus 로고
    • The power ratio and the interval map: Spiking models and extracellular recordings
    • Reich D, Victor J and Knight B 1998 The power ratio and the interval map: spiking models and extracellular recordings J. Neurosci. 18 10090-104
    • (1998) J. Neurosci. , vol.18 , pp. 10090-10104
    • Reich, D.1    Victor, J.2    Knight, B.3
  • 42
    • 0001377577 scopus 로고
    • On convexity of measures
    • Rinott Y 1976 On convexity of measures Ann. Probab. 4 1020-6
    • (1976) Ann. Probab. , vol.4 , pp. 1020-1026
    • Rinott, Y.1
  • 44
    • 84898946956 scopus 로고    scopus 로고
    • Evidence optimization techniques for estimating stimulus-response functions
    • Sahani M and Linden J 2003 Evidence optimization techniques for estimating stimulus-response functions Neural Information Processing Systems vol 15
    • (2003) Neural Information Processing Systems , vol.15
    • Sahani, M.1    Linden, J.2
  • 45
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G 1978 Estimating the dimension of a model Ann. Stat. 7 461-4
    • (1978) Ann. Stat. , vol.7 , pp. 461-464
    • Schwarz, G.1
  • 47
    • 0345768782 scopus 로고    scopus 로고
    • Analyzing neural responses to natural signals: Maximally informative dimensions
    • Sharpee T, Rust N and Bialek W 2004 Analyzing neural responses to natural signals: maximally informative dimensions Neural Computation 16 223-50
    • (2004) Neural Computation , vol.16 , pp. 223-250
    • Sharpee, T.1    Rust, N.2    Bialek, W.3
  • 49
    • 0032031687 scopus 로고    scopus 로고
    • A model of neuronal responses in visual area MT
    • Simoncelli E P and Heeger D J 1998 A model of neuronal responses in visual area MT Vis. Res. 38 743-61
    • (1998) Vis. Res. , vol.38 , pp. 743-761
    • Simoncelli, E.P.1    Heeger, D.J.2
  • 50
    • 0038793884 scopus 로고    scopus 로고
    • The receptive-field organization of simple cells in primary visual cortex of ferrets under natural scene stimulation
    • Smyth D, Willmore B, Baker G, Thompson I and Tolhurst D 2003 The receptive-field organization of simple cells in primary visual cortex of ferrets under natural scene stimulation. J. Neurosci. 23 4746-59
    • (2003) J. Neurosci. , vol.23 , pp. 4746-4759
    • Smyth, D.1    Willmore, B.2    Baker, G.3    Thompson, I.4    Tolhurst, D.5
  • 52
    • 85156191435 scopus 로고    scopus 로고
    • When is an integrate-and-fire neuron like a Poisson neuron?
    • Stevens C and Zador A 1996 When is an integrate-and-fire neuron like a Poisson neuron? Neural Information Processing Systems vol 8, pp 103-9
    • (1996) Neural Information Processing Systems , vol.8 , pp. 103-109
    • Stevens, C.1    Zador, A.2
  • 53
    • 0000398779 scopus 로고    scopus 로고
    • Novel integrate-and-fire-like model of repetitive firing in cortical neurons
    • University of California, San Diego
    • Stevens C and Zador A 1998 Novel integrate-and-fire-like model of repetitive firing in cortical neurons Proc. 5th Joint Symp. on Neural Computation (University of California, San Diego) available at http://www.sloan.salk.edu/~zador/rep_fire_inc/rep.fire.inc.html
    • (1998) Proc. 5th Joint Symp. on Neural Computation
    • Stevens, C.1    Zador, A.2
  • 54
    • 0036635472 scopus 로고    scopus 로고
    • Attractor reliability reveals deterministic structure in neuronal spike-trains
    • Tiesinga P, Fellous J and Sejnowski T 2003 Attractor reliability reveals deterministic structure in neuronal spike-trains Neural Computation 14 1629-50
    • (2003) Neural Computation , vol.14 , pp. 1629-1650
    • Tiesinga, P.1    Fellous, J.2    Sejnowski, T.3
  • 55
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping M 2001 Sparse Bayesian learning and the relevance vector machine J. Mach. Learn. Res. 1 211-44
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 211-244
    • Tipping, M.1
  • 57
    • 0033521056 scopus 로고    scopus 로고
    • Linking spontaneous activity of single cortical neurons and the underlying functional architecture
    • Tsodyks M, Kenet T, Grinvald A and Arieli A 1999 Linking spontaneous activity of single cortical neurons and the underlying functional architecture Science 286 1943-6
    • (1999) Science , vol.286 , pp. 1943-1946
    • Tsodyks, M.1    Kenet, T.2    Grinvald, A.3    Arieli, A.4
  • 59
    • 0030686449 scopus 로고    scopus 로고
    • Decoding visual information from a population of retinal ganglion cells
    • Warland D, Reinagel P and Meister M 1997 Decoding visual information from a population of retinal ganglion cells J. Neurophysiol. 78 2336-50
    • (1997) J. Neurophysiol. , vol.78 , pp. 2336-2350
    • Warland, D.1    Reinagel, P.2    Meister, M.3
  • 60
    • 85041988327 scopus 로고
    • On the existence and uniqueness of the maximum likelihood estimator for certain generalized linear models
    • Wedderburn R 1976 On the existence and uniqueness of the maximum likelihood estimator for certain generalized linear models Biometrika 63 27-32
    • (1976) Biometrika , vol.63 , pp. 27-32
    • Wedderburn, R.1
  • 61
    • 21844493035 scopus 로고
    • Adapting for the missing link
    • Weisberg S and Welsh A 1994 Adapting for the missing link Ann. Stat. 22 1674-700
    • (1994) Ann. Stat. , vol.22 , pp. 1674-1700
    • Weisberg, S.1    Welsh, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.