메뉴 건너뛰기




Volumn 18, Issue 4, 2007, Pages 375-407

Common-input models for multiple neural spike-train data

Author keywords

Common input; Cox process; Expectation maximization algorithm; Network model

Indexed keywords

ACTION POTENTIAL; ALGORITHM; ANIMAL; ARTICLE; ARTIFICIAL NEURAL NETWORK; BIOLOGICAL MODEL; COMPUTER SIMULATION; NERVE CELL; NERVE TRACT; PHYSIOLOGY; PROPORTIONAL HAZARDS MODEL;

EID: 35448977149     PISSN: 0954898X     EISSN: 13616536     Source Type: Journal    
DOI: 10.1080/09548980701625173     Document Type: Article
Times cited : (106)

References (58)
  • 2
    • 9644270644 scopus 로고    scopus 로고
    • Selecting the signals for a brain-machine interface
    • Andersen R, Musallam S, Pesaran B. 2004. Selecting the signals for a brain-machine interface. Curr Opin Neurobiol 14:720-726.
    • (2004) Curr Opin Neurobiol , vol.14 , pp. 720-726
    • Andersen, R.1    Musallam, S.2    Pesaran, B.3
  • 3
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for on-line non-linear/non-gaussian bayesian tracking
    • Arulampalam S, Maskell S, Gordon N, Clapp T. 2002. A tutorial on particle filters for on-line non-linear/non-gaussian bayesian tracking. IEEE Trans Signal Process 50(2):174-188.
    • (2002) IEEE Trans Signal Process , vol.50 , Issue.2 , pp. 174-188
    • Arulampalam, S.1    Maskell, S.2    Gordon, N.3    Clapp, T.4
  • 5
    • 0023686914 scopus 로고
    • Maximum likelihood analysis of spike trains of interacting nerve cells
    • Brillinger D. 1988. Maximum likelihood analysis of spike trains of interacting nerve cells. Biol Cyberkinet 59:189-200.
    • (1988) Biol Cyberkinet , vol.59 , pp. 189-200
    • Brillinger, D.1
  • 6
    • 1542615171 scopus 로고    scopus 로고
    • Recursive Bayesian decoding of motor cortical signals by particle filtering
    • Brockwell A, Rojas A, Kass R. 2004. Recursive Bayesian decoding of motor cortical signals by particle filtering. J Neurophysiol 91:1899-1907.
    • (2004) J Neurophysiol , vol.91 , pp. 1899-1907
    • Brockwell, A.1    Rojas, A.2    Kass, R.3
  • 7
    • 0347506358 scopus 로고    scopus 로고
    • Correlations without synchrony
    • Brody C. 1999. Correlations without synchrony. Neural Comput 11:1537-1551.
    • (1999) Neural Comput , vol.11 , pp. 1537-1551
    • Brody, C.1
  • 8
    • 2142765521 scopus 로고    scopus 로고
    • Multiple neural spike train data analysis: State-of-the-art and future challenges
    • Brown E, Kass R, Mitra P. 2004. Multiple neural spike train data analysis: State-of-the-art and future challenges. Nature Neurosci 7:456-461.
    • (2004) Nature Neurosci , vol.7 , pp. 456-461
    • Brown, E.1    Kass, R.2    Mitra, P.3
  • 9
    • 0023688346 scopus 로고
    • Maximum like- lihood identification of neural point process systems
    • Chornoboy E, Schramm L, Karr A. 1988. Maximum like- lihood identification of neural point process systems. Biol Cybernetics 59:265-275.
    • (1988) Biol Cybernetics , vol.59 , pp. 265-275
    • Chornoboy, E.1    Schramm, L.2    Karr, A.3
  • 10
    • 0038348981 scopus 로고    scopus 로고
    • Attractor dynamics of network up states in the neocortex
    • Cossart R, Aronov D, Yuste R. 2003. Attractor dynamics of network up states in the neocortex. Nature 423:283-288.
    • (2003) Nature , vol.423 , pp. 283-288
    • Cossart, R.1    Aronov, D.2    Yuste, R.3
  • 11
    • 0000168129 scopus 로고
    • Some statistical methods connected with series of events
    • Cox D. 1955. Some statistical methods connected with series of events. J Royal Stat Soc, Ser B 17:129-164.
    • (1955) J Royal Stat Soc, Ser B , vol.17 , pp. 129-164
    • Cox, D.1
  • 13
    • 0043169189 scopus 로고
    • Covariances for smoothed estimates in state space models
    • de Jong P, MacKinnon M. 1988. Covariances for smoothed estimates in state space models. Biometrika 75:601-2.
    • (1988) Biometrika , vol.75 , pp. 601-602
    • de Jong, P.1    MacKinnon, M.2
  • 14
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster A, Laird N, Rubin D. 1977. Maximum likelihood from incomplete data via the EM algorithm. J Royal Stat Soc, Ser B 39:1-38.
    • (1977) J Royal Stat Soc, Ser B , vol.39 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 15
    • 21344491461 scopus 로고
    • Positive deflniteness in the numerical solution of riccati equations
    • Dieci L, Eirola T. 1994. Positive deflniteness in the numerical solution of riccati equations. Numer Math 67:303-13.
    • (1994) Numer Math , vol.67 , pp. 303-313
    • Dieci, L.1    Eirola, T.2
  • 16
    • 0036828974 scopus 로고    scopus 로고
    • Connecting cortex to machines: Recent advances in brain interfaces
    • Donoghue J. 2002. Connecting cortex to machines: Recent advances in brain interfaces. Nat Neurosci 5:1085-1088.
    • (2002) Nat Neurosci , vol.5 , pp. 1085-1088
    • Donoghue, J.1
  • 17
    • 0003665481 scopus 로고    scopus 로고
    • Doucet A, de Freitas N, Gordon N, editors, New York: Springer
    • Doucet A, de Freitas N, Gordon N, editors. 2001. Sequential Monte Carlo in Practice. New York: Springer.
    • (2001) Sequential Monte Carlo in Practice
  • 21
    • 4344577272 scopus 로고    scopus 로고
    • Including long-range dependence in integrate-and-fire models of the high interspikeinterval variability of cortical neurons
    • Jackson B. 2004. Including long-range dependence in integrate-and-fire models of the high interspikeinterval variability of cortical neurons. Neural Comput 16:2125-2195.
    • (2004) Neural Comput , vol.16 , pp. 2125-2195
    • Jackson, B.1
  • 24
    • 0032166975 scopus 로고    scopus 로고
    • Mimicking the human ear: An introduction to cochlear implants
    • Loizou P. 1998. Mimicking the human ear: an introduction to cochlear implants. IEEE Signal Process Mag 15:101-130.
    • (1998) IEEE Signal Process Mag , vol.15 , pp. 101-130
    • Loizou, P.1
  • 25
    • 0034324119 scopus 로고    scopus 로고
    • Neural coding: Higher-order temporal patterns in the neuro-statistics of cell assemblies
    • Martignon L, Deco G, Laskey K, Diamond M, Freiwald W, Vaadia E. 2000. Neural coding: Higher-order temporal patterns in the neuro-statistics of cell assemblies. Neural Comput 12:2621-2653.
    • (2000) Neural Comput , vol.12 , pp. 2621-2653
    • Martignon, L.1    Deco, G.2    Laskey, K.3    Diamond, M.4    Freiwald, W.5    Vaadia, E.6
  • 31
    • 29144507409 scopus 로고    scopus 로고
    • Revealing pairwise coupling in linear-nonlinear net- works
    • Nykamp D. 2005. Revealing pairwise coupling in linear-nonlinear net- works. SIAM J Appl Math 65:2005-2032.
    • (2005) SIAM J Appl Math , vol.65 , pp. 2005-2032
    • Nykamp, D.1
  • 32
    • 33845459534 scopus 로고    scopus 로고
    • A mathematical framework for inferring connectivity in probabilistic neuronal networks
    • Nykamp DQ. 2007. A mathematical framework for inferring connectivity in probabilistic neuronal networks. Math Biosci 205:204-251.
    • (2007) Math Biosci , vol.205 , pp. 204-251
    • Nykamp, D.Q.1
  • 33
    • 23044490853 scopus 로고    scopus 로고
    • Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity
    • Okatan M, Wilson M, Brown E. 2005. Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity. Neural Comput 17:1927-1961.
    • (2005) Neural Comput , vol.17 , pp. 1927-1961
    • Okatan, M.1    Wilson, M.2    Brown, E.3
  • 34
    • 9744274025 scopus 로고    scopus 로고
    • Maximum likelihood estimation of cascade point-process neural encoding models
    • Paninski L. 2004. Maximum likelihood estimation of cascade point-process neural encoding models. Network: Comput Neural Syst 15:243-262.
    • (2004) Network: Comput Neural Syst , vol.15 , pp. 243-262
    • Paninski, L.1
  • 35
    • 84899012151 scopus 로고    scopus 로고
    • Log-concavity results on Gaussian process methods for supervised and unsupervised learning
    • Paninski L. 2005. Log-concavity results on Gaussian process methods for supervised and unsupervised learning. Adv Neural Inform Process Syst 17:1025-1032.
    • (2005) Adv Neural Inform Process Syst , vol.17 , pp. 1025-1032
    • Paninski, L.1
  • 36
    • 4744360960 scopus 로고    scopus 로고
    • Superlinear population encoding of dynamic hand trajectory in primary motor cortex
    • Paninski L, Fellows, M, Shoham, S, Hatsopoulos, N, Donoghue, J. 2004. Superlinear population encoding of dynamic hand trajectory in primary motor cortex. J Neurosci 24:8551-8561.
    • (2004) J Neurosci , vol.24 , pp. 8551-8561
    • Paninski, L.1    Fellows, M.2    Shoham, S.3    Hatsopoulos, N.4    Donoghue, J.5
  • 38
    • 35448937735 scopus 로고    scopus 로고
    • Book RCO5 Robert C, Casella G. 2005. Monte Carlo Statistical Methods. Springer.
    • Book RCO5 Robert C, Casella G. 2005. Monte Carlo Statistical Methods. Springer.
  • 40
    • 0034133323 scopus 로고    scopus 로고
    • Noise in integrate-and-fire neurons: From stochastic input to escape rates
    • Plesser H, Gerstner W. 2000. Noise in integrate-and-fire neurons: From stochastic input to escape rates. Neural Comput 12:367-384.
    • (2000) Neural Comput , vol.12 , pp. 367-384
    • Plesser, H.1    Gerstner, W.2
  • 41
    • 35449007363 scopus 로고    scopus 로고
    • Press W, Teukolsky S, Vetterling W, Flannery B. 1992. Numerical recipes in C. New York: Cambridge University Press.
    • Press W, Teukolsky S, Vetterling W, Flannery B. 1992. Numerical recipes in C. New York: Cambridge University Press.
  • 42
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner L. 1989. A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77:257-286.
    • (1989) Proc IEEE , vol.77 , pp. 257-286
    • Rabiner, L.1
  • 43
    • 0033556862 scopus 로고    scopus 로고
    • A unifying review of linear gaussian models
    • Roweis S, Ghahramani, Z. 1999. A unifying review of linear gaussian models. Neural Comput 11(2): 305-345.
    • (1999) Neural Comput , vol.11 , Issue.2 , pp. 305-345
    • Roweis, S.1    Ghahramani, Z.2
  • 46
    • 0037421736 scopus 로고    scopus 로고
    • Multineuronal firing patterns in the signal from eye to brain
    • Schnitzer M, Meister, M. 2003. Multineuronal firing patterns in the signal from eye to brain. Neuron 37:499-511.
    • (2003) Neuron , vol.37 , pp. 499-511
    • Schnitzer, M.1    Meister, M.2
  • 47
    • 0038605051 scopus 로고    scopus 로고
    • Estimating a state-space model from point process observations
    • Smith A, Brown, E. 2003. Estimating a state-space model from point process observations. Neural Comput 15:965-991.
    • (2003) Neural Comput , vol.15 , pp. 965-991
    • Smith, A.1    Brown, E.2
  • 48
    • 0015282286 scopus 로고
    • Filtering and detection for doubly stochastic poisson processes
    • Snyder D. 1972a. Filtering and detection for doubly stochastic poisson processes. IEEE Trans Inform Theory 18:91-102.
    • (1972) IEEE Trans Inform Theory , vol.18 , pp. 91-102
    • Snyder, D.1
  • 49
    • 0015398036 scopus 로고
    • Smoothing for doubly stochastic poisson processes
    • Snyder DL. 1972b. Smoothing for doubly stochastic poisson processes. IEEE Trans Inform Theory 18:558-562.
    • (1972) IEEE Trans Inform Theory , vol.18 , pp. 558-562
    • Snyder, D.L.1
  • 51
    • 85156191435 scopus 로고    scopus 로고
    • When is an integrate-and-fire neuron like a Poisson neuron?
    • Stevens C, Zador A. 1996. When is an integrate-and-fire neuron like a Poisson neuron? NIPS 8:103-109.
    • (1996) NIPS , vol.8 , pp. 103-109
    • Stevens, C.1    Zador, A.2
  • 52
    • 12544253489 scopus 로고    scopus 로고
    • A point process framework for relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects
    • Truccolo W, Eden U, Fellows M, Donoghue J, Brown E. 2005. A point process framework for relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects. J Neurophysiol 93:1074-1089.
    • (2005) J Neurophysiol , vol.93 , pp. 1074-1089
    • Truccolo, W.1    Eden, U.2    Fellows, M.3    Donoghue, J.4    Brown, E.5
  • 53
    • 0007962152 scopus 로고    scopus 로고
    • A new method for detecting neural interconnectivity
    • Utíkal K. 1997. A new method for detecting neural interconnectivity. Biol Cyberkinet 76:459-470.
    • (1997) Biol Cyberkinet , vol.76 , pp. 459-470
    • Utíkal, K.1
  • 54
    • 0141696555 scopus 로고    scopus 로고
    • The unscented Kalman filter
    • Haykin S, editor, Wiley-Intersceince
    • Wan E, Merwe R. 2004. The unscented Kalman filter. In Haykin S, editor, Kalman Filtering and Neural Networks, pp. 131-158. Wiley-Intersceince.
    • (2004) Kalman Filtering and Neural Networks , pp. 131-158
    • Wan, E.1    Merwe, R.2
  • 57
    • 33644876951 scopus 로고    scopus 로고
    • Bayesian population coding of motor cortical activity using a Kalman filter
    • Jan
    • Wu W, Gao Y, Bienenstock E, Donoghue JP, Black MJ. 2005. Bayesian population coding of motor cortical activity using a Kalman filter. Neural Comput 18(1), Jan 2006:80-118.
    • (2005) Neural Comput , vol.18 , Issue.1 , pp. 80-118
    • Wu, W.1    Gao, Y.2    Bienenstock, E.3    Donoghue, J.P.4    Black, M.J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.