메뉴 건너뛰기




Volumn 1, Issue 4, 2006, Pages 733-764

Bayesian modelling and analysis of spatio-temporal neuronal networks

Author keywords

Bayesian model selection; Hierarchical models; Multi electrode arrays; Multiple spike trains analysis; Shrinkage priors

Indexed keywords


EID: 42149195907     PISSN: 19360975     EISSN: 19316690     Source Type: Journal    
DOI: 10.1214/06-BA124     Document Type: Article
Times cited : (34)

References (71)
  • 1
    • 0000517212 scopus 로고    scopus 로고
    • Bayesian residual analysis for binary response regression models
    • 741
    • J. Albert and S. Chib. Bayesian residual analysis for binary response regression models. Biometrika, 82:747s759, 1996. 741
    • (1996) Biometrika , vol.82 , pp. 747-759
    • Albert, J.1    Chib, S.2
  • 3
    • 0014257478 scopus 로고
    • A Bayesian approach to some outliers problems
    • 738
    • G.E.P. Box and G.C. Tiao. A Bayesian approach to some outliers problems. Biometrika, 55: 119-129, 1968. 738
    • (1968) Biometrika , vol.55 , pp. 119-129
    • Box, G.E.P.1    Tiao, G.C.2
  • 4
    • 0023686914 scopus 로고
    • Maximum likelihood analysis of spike trains of interacting nerve cells
    • 734 737 757
    • D.R. Brillinger. Maximum likelihood analysis of spike trains of interacting nerve cells. Biological Cybernetics, 59:189-200, 1988a. 734, 737, 757
    • (1988) Biological Cybernetics , vol.59 , pp. 189-200
    • Brillinger, D.R.1
  • 5
    • 0013655726 scopus 로고
    • Some statistical methods for random processes data from seismology and neurophysiology
    • 734 736
    • D.R. Brillinger. Some statistical methods for random processes data from seismology and neurophysiology. The Annals of Statistics, 16:1-54, 1988b. 734, 736
    • (1988) The Annals of Statistics , vol.16 , pp. 1-54
    • Brillinger, D.R.1
  • 6
    • 0000059288 scopus 로고
    • Nerve cell spike train data analysis: a progression of technique
    • 734
    • D.R. Brillinger. Nerve cell spike train data analysis: a progression of technique. Journal of the American Statistical Association, 87:260-271, 1992. 734
    • (1992) Journal of the American Statistical Association , vol.87 , pp. 260-271
    • Brillinger, D.R.1
  • 8
    • 0018597073 scopus 로고
    • Empirical estimation of the threshold model of neuron ring
    • 734
    • D.R. Brillinger and J.P. Segundo. Empirical estimation of the threshold model of neuron ring. Biological Cybernetics, 35:213-220, 1979. 734
    • (1979) Biological Cybernetics , vol.35 , pp. 213-220
    • Brillinger, D.R.1    Segundo, J.P.2
  • 9
    • 0003986138 scopus 로고    scopus 로고
    • Assessing connections in networks of biological neurons
    • Honor of John W. Tukey; D. R. Brillinger, L. T. Fernholz and S. Morgenthaler (eds. ), 735 737 757
    • D.R. Brillinger and E.P. Villa. Assessing connections in networks of biological neurons. In: The Practice of Data Analysis: Essays in Honor of John W. Tukey; D. R. Brillinger, L. T. Fernholz and S. Morgenthaler (eds.), pages 77-92, 1997. 735, 737, 757
    • (1997) The Practice of Data Analysis: Essays , pp. 77-92
    • Brillinger, D.R.1    Villa, E.P.2
  • 10
    • 0036482863 scopus 로고    scopus 로고
    • The time-rescaling theorem and its application to neural spike train data analysis
    • 741
    • E. Brown, R. Barbieri, V. Ventura, R.E. Kass, and L.M. Frank. The time-rescaling theorem and its application to neural spike train data analysis. Nature Computation, 14:325-346, 2001. 741
    • (2001) Nature Computation , vol.14 , pp. 325-346
    • Brown, E.1    Barbieri, R.2    Ventura, V.3    Kass, R.E.4    Frank, L.M.5
  • 11
    • 2142765521 scopus 로고    scopus 로고
    • Multiple neural spike train data analysis: state-of-the-art and future challenges
    • 735
    • E. Brown, R.E. Kass, and P.P. Mitra. Multiple neural spike train data analysis: state-of-the-art and future challenges. Nature Neuroscience, 7:456-461, 2004. 735
    • (2004) Nature Neuroscience , vol.7 , pp. 456-461
    • Brown, E.1    Kass, R.E.2    Mitra, P.P.3
  • 12
    • 0023688346 scopus 로고
    • Maximum likelihood identication of neuronal point process systems
    • 735
    • E.S. Chornoboy, L.P. Schramm, and A.F. Karr. Maximum likelihood identication of neuronal point process systems. Biological cybernetics, 59:265-275, 1988. 735
    • (1988) Biological cybernetics , vol.59 , pp. 265-275
    • Chornoboy, E.S.1    Schramm, L.P.2    Karr, A.F.3
  • 16
    • 0011335953 scopus 로고    scopus 로고
    • Bayesian variable selection using the gibbs sampler
    • (D. K. Dey, S. Ghosh and B. Mallick, eds. ). New York: Marcel Dekker,. 733
    • P. Dellaportas, J. Forster, and I. Ntzoufras. Bayesian variable selection using the gibbs sampler. In: Generalized linear models: A Bayesian perspective (D.K.Dey, S.Ghosh and B.Mallick, eds.). New York: Marcel Dekker, 2000. 733
    • (2000) Generalized linear models: A Bayesian perspective
    • Dellaportas, P.1    Forster, J.2    Ntzoufras, I.3
  • 17
    • 0010045457 scopus 로고    scopus 로고
    • Bayesian curve-tting with free-knot splines
    • 734
    • I. Di Matteo, C.R. Genovese, and R.E. Kass. Bayesian curve-tting with free-knot splines. Biometrika, 88:1055-1071, 2001. 734
    • (2001) Biometrika , vol.88 , pp. 1055-1071
    • Di Matteo, I.1    Genovese, C.R.2    Kass, R.E.3
  • 18
    • 33746510330 scopus 로고
    • On estimating the dependence between two point processes
    • 734
    • H. Doss. On estimating the dependence between two point processes. Annals of Statistics, 17: 749-963, 1989. 734
    • (1989) Annals of Statistics , vol.17 , pp. 749-963
    • Doss, H.1
  • 19
    • 0002276308 scopus 로고    scopus 로고
    • Assessment and propagation of model uncertainty
    • 733
    • D. Draper. Assessment and propagation of model uncertainty. Journal of the Royal Statistical Society B, 57:45-97, 2002. 733
    • (2002) Journal of the Royal Statistical Society B , vol.57 , pp. 45-97
    • Draper, D.1
  • 21
    • 84867174041 scopus 로고    scopus 로고
    • Computational neuroscience
    • 734, 741
    • J. Feng. Computational neuroscience. Chapman and Hall, 2003. 734, 741
    • (2003) Chapman and Hall
    • Feng, J.1
  • 22
    • 0001787029 scopus 로고
    • Bayesian density estimation by mixtures of Normal distributions
    • (M. Rizvi, J. Rustagi, and D. Siegmund, eds. ); Academic Press, New York 734
    • T.S. Ferguson. Bayesian density estimation by mixtures of Normal distributions. Recent advances in Statistics (M. Rizvi, J. Rustagi, and D. Siegmund, eds.); Academic Press, New York, pages 287-302, 1983. 734
    • (1983) Recent advances in Statistics , pp. 287-302
    • Ferguson, T.S.1
  • 23
    • 0016222930 scopus 로고
    • Stochastic models for single neuron ring trains: a survey
    • 734
    • S. E. Fienberg. Stochastic models for single neuron ring trains: a survey. Biometrics, 30: 399-427, 1974. 734
    • (1974) Biometrics , vol.30 , pp. 399-427
    • Fienberg, S.E.1
  • 24
    • 53349102813 scopus 로고
    • Impulse and physiological states in models of nerve membrane
    • R.A. FitzHugh. Impulse and physiological states in models of nerve membrane. Biolphysics Journal, 1:445-466, 1961. 734
    • (1961) Biolphysics Journal , vol.1 , pp. 445-466
    • FitzHugh, R.A.1
  • 25
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • 733
    • N. Friedman. Inferring cellular networks using probabilistic graphical models. Science, 303: 799-805, 2004. 733
    • (2004) Science , vol.303 , pp. 799-805
    • Friedman, N.1
  • 31
    • 0031526204 scopus 로고    scopus 로고
    • Approaches for Bayesian variable selection
    • 733
    • E.I. George and R.E. McCulloch. Approaches for Bayesian variable selection. Statistica Sinica, 7:339-373, 1997. 733
    • (1997) Statistica Sinica , vol.7 , pp. 339-373
    • George, E.I.1    McCulloch, R.E.2
  • 36
    • 0035591051 scopus 로고    scopus 로고
    • On the relationship between MCMC model uncertainty methods
    • 733
    • S. Godsill. On the relationship between MCMC model uncertainty methods. Journal of Com-putational and Graphical Statistics, 10:230-248, 2001. 733
    • (2001) Journal of Com-putational and Graphical Statistics , vol.10 , pp. 230-248
    • Godsill, S.1
  • 37
    • 77956889087 scopus 로고
    • Reversible jump MCMC computation and Bayesian model determination
    • 734
    • P.J. Green. Reversible jump MCMC computation and Bayesian model determination. Biometrika, 82:711-732, 1995. 734
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 38
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • 759
    • W.K. Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57-1:97-109, 1970. 759
    • (1970) Biometrika , vol.57 , Issue.1 , pp. 97-109
    • Hastings, W.K.1
  • 39
    • 0003846041 scopus 로고    scopus 로고
    • Technical Report MSR-TR-95-06, Microsoft Research, Redmond, Washington,.733
    • D. Heckerman. A tutorial on learning with Bayesian networks. Technical Report MSR-TR-95-06, Microsoft Research, Redmond, Washington, 1996. 733
    • (1996) A tutorial on learning with Bayesian networks
    • Heckerman, D.1
  • 40
    • 35649001607 scopus 로고
    • A quantitative description of membrane current and its application to conduction and excitation in nerve
    • 734
    • A.L. Hodgkin and A.F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117:500-544, 1952. 734
    • (1952) Journal of Physiology , vol.117 , pp. 500-544
    • Hodgkin, A.L.1    Huxley, A.F.2
  • 42
    • 84867147616 scopus 로고    scopus 로고
    • Resonate and re neurons
    • 734
    • E.M. Izhikevitch. Resonate and re neurons. Neural networks, 10:1171-1266, 2001. 734
    • (2001) Neural networks , vol.10 , pp. 1171-1266
    • Izhikevitch, E.M.1
  • 43
    • 0035432526 scopus 로고    scopus 로고
    • A spike train probability model
    • 734 736 757
    • R.E. Kass and V. Ventura. A spike train probability model. Neural computation, 13:1713-1720, 2001. 734, 736, 757
    • (2001) Neural computation , vol.13 , pp. 1713-1720
    • Kass, R.E.1    Ventura, V.2
  • 44
    • 21544439557 scopus 로고    scopus 로고
    • Statistical issues in the analysis of neuronal data
    • 735
    • R.E. Kass, V. Ventura, and E. Brown. Statistical issues in the analysis of neuronal data. Journal of Neurophysiology, 94:8-25, 2005. 735
    • (2005) Journal of Neurophysiology , vol.94 , pp. 8-25
    • Kass, R.E.1    Ventura, V.2    Brown, E.3
  • 48
    • 0001006209 scopus 로고
    • Local computations with probabilities on graphical structures and their applications to expert systems
    • 736
    • S.L. Lauritzen and D.J. Spiegelhalter. Local computations with probabilities on graphical structures and their applications to expert systems. Journal of the Royal Statistical Society B, 50:157-224, 1988. 736
    • (1988) Journal of the Royal Statistical Society B , vol.50 , pp. 157-224
    • Lauritzen, S.L.1    Spiegelhalter, D.J.2
  • 49
    • 0034324119 scopus 로고    scopus 로고
    • Neural coding: higher-order temporal patterns in the neurostatistics of cell assemblies
    • 735
    • L. Martignon, G. Deco, K. Laskey, M. Diamond, W. Freiwald, and E. Vaadia. Neural coding: higher-order temporal patterns in the neurostatistics of cell assemblies. Neural Computation, 12:2621-2653, 2000. 735
    • (2000) Neural Computation , vol.12 , pp. 2621-2653
    • Martignon, L.1    Deco, G.2    Laskey, K.3    Diamond, M.4    Freiwald, W.5    Vaadia, E.6
  • 51
    • 27644594482 scopus 로고    scopus 로고
    • Investigating neuronal activity with planar microelectrode arrays: achievements and new perspectives
    • 734
    • F.O. Morin, Y. Takamura, and E. Tamiya. Investigating neuronal activity with planar microelectrode arrays: achievements and new perspectives. Journal of Bioscience and Bioengi-neering, 100:131-143, 2005. 734
    • (2005) Journal of Bioscience and Bioengi-neering , vol.100 , pp. 131-143
    • Morin, F.O.1    Takamura, Y.2    Tamiya, E.3
  • 56
    • 23044490853 scopus 로고    scopus 로고
    • Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity
    • 735
    • M. Okatan, M.A. Wilson, and E.N. Brown. Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity. Neural computation, 17:1927-1961, 2005. 735
    • (2005) Neural computation , vol.17 , pp. 1927-1961
    • Okatan, M.1    Wilson, M.A.2    Brown, E.N.3
  • 57
    • 84966209651 scopus 로고
    • Integrability of expected increments of point processes and related random change of scale
    • 741
    • F. Papangelou. Integrability of expected increments of point processes and related random change of scale. Transactions of the American Mathematical Society, 165:483-506, 1972. 741
    • (1972) Transactions of the American Mathematical Society , vol.165 , pp. 483-506
    • Papangelou, F.1
  • 58
    • 0000350475 scopus 로고
    • Logistic regression diagnostics
    • 741
    • D. Pregibon. Logistic regression diagnostics. The Annals of Statistics, 9:705-724, 1981. 741
    • (1981) The Annals of Statistics , vol.9 , pp. 705-724
    • Pregibon, D.1
  • 60
    • 0003053548 scopus 로고
    • Bayesian computations via the Gibbs sampler and related Markov chain monte Carlo methods
    • 739
    • A. F.M. Smith and G.O. Roberts. Bayesian computations via the Gibbs sampler and related Markov chain monte Carlo methods. Journal of the Royal Statistical Society B, 55:3-23, 1993. 739
    • (1993) Journal of the Royal Statistical Society B , vol.55 , pp. 323
    • Smith, A.F.M.1    Roberts, G.O.2
  • 62
    • 0003263637 scopus 로고
    • Directed cyclic graphical representations of feedback models
    • Philippe Besnard and Steve Hanks editors. Morgan Kauffmann Publishing Incorporation. San Mateo, 733
    • P. Spirtes. Directed cyclic graphical representations of feedback models. Proceedings of the eleventh conference on uncertainty in articial intelligence. Philippe Besnard and Steve Hanks editors. Morgan Kauffmann Publishing Incorporation. San Mateo, pages 491-498, 1995. 733
    • (1995) Proceedings of the eleventh conference on uncertainty in articial intelligence , pp. 491-498
    • Spirtes, P.1
  • 63
    • 33747349191 scopus 로고
    • Nonuniversal critical dynamics in Monte Carlo simulations
    • 758
    • R.H. Swendsen and J.S. Wang. Nonuniversal critical dynamics in Monte Carlo simulations. Physics review letters, 58:86-88, 1987. 758
    • (1987) Physics review letters , vol.58 , pp. 86-88
    • Swendsen, R.H.1    Wang, J.S.2
  • 64
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions
    • 739
    • L. Tierney. Markov chains for exploring posterior distributions. The Annals of Statistics, 22: 1701-1762, 1994. 739
    • (1994) The Annals of Statistics , vol.22 , pp. 1701-1762
    • Tierney, L.1
  • 65
    • 12544253489 scopus 로고    scopus 로고
    • A point process framework for relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate e ects
    • 735 737 741 757
    • W. Truccolo, U.T. Eden, M.R. Fellows, J.P. Donoghue, and E.N. Brown. A point process framework for relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate e ects. Journal of Neurophysiology, 93:1074-1089, 2005. 735, 737, 741, 757
    • (2005) Journal of Neurophysiology , vol.93 , pp. 1074-1089
    • Truccolo, W.1    Eden, U.T.2    Fellows, M.R.3    Donoghue, J.P.4    Brown, E.N.5
  • 66
    • 0027263996 scopus 로고
    • Statistical analysis of mixtures applied to postsynaptic potentialfluctuations
    • 734
    • D.A. Turner and M. West. Statistical analysis of mixtures applied to postsynaptic potentialfluctuations. Journal of neuroscience methods, 47:1-23, 1993. 734
    • (1993) Journal of neuroscience methods , vol.47 , pp. 1-23
    • Turner, D.A.1    West, M.2
  • 68
    • 6344231523 scopus 로고    scopus 로고
    • Long-term characterization of ring dynamics of spontaneous bursts in cultured neural networks
    • 734 749 758
    • J. Van Pelt, P.S. Wolters, M.A. Corner, W.L.C. Rutten, and G.J.A. Ramakers. Long-term characterization of ring dynamics of spontaneous bursts in cultured neural networks. IEEE Trans. BioMed. Eng., 51:2051-2062, 2004. 734, 749, 758
    • (2004) IEEE Trans. BioMed. Eng. , vol.51 , pp. 2051-2062
    • Van Pelt, J.1    Wolters, P.S.2    Corner, M.A.3    Rutten, W.L.C.4    Ramakers, G.J.A.5
  • 69
    • 0031497384 scopus 로고    scopus 로고
    • Hierarchical mixture models in neurological transmission analysis
    • 734
    • M. West. Hierarchical mixture models in neurological transmission analysis. Journal of the American Statistical Association, 92:587-606, 1997. 734
    • (1997) Journal of the American Statistical Association , vol.92 , pp. 587-606
    • West, M.1
  • 70
    • 0011565597 scopus 로고
    • Deconvolution of mixtures in analysis of neural synaptic transmission
    • 734
    • M. West and D.A. Turner. Deconvolution of mixtures in analysis of neural synaptic transmission. The Statistician, 43:31-43, 1992. 734
    • (1992) The Statistician , vol.43 , pp. 31-43
    • West, M.1    Turner, D.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.