메뉴 건너뛰기




Volumn 23, Issue 1, 2011, Pages 46-96

Efficient Markov chain monte carlo methods for decoding neural spike trains

Author keywords

[No Author keywords available]

Indexed keywords

ACTION POTENTIAL; ALGORITHM; ANIMAL; ARTICLE; ARTIFICIAL NEURAL NETWORK; BAYES THEOREM; HUMAN; MONTE CARLO METHOD; NERVE CELL; NERVE CELL NETWORK; PHYSIOLOGY; PROBABILITY; RETINA GANGLION CELL; SIGNAL PROCESSING;

EID: 78650592845     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00059     Document Type: Article
Times cited : (52)

References (86)
  • 1
    • 0032609779 scopus 로고    scopus 로고
    • The effect of correlated variability on the accuracy of a population code
    • Abbott, L., & Dayan, P. (1999). The effect of correlated variability on the accuracy of a population code. Neural Computation, 11, 91-101.
    • (1999) Neural Computation , vol.11 , pp. 91-101
    • Abbott, L.1    Dayan, P.2
  • 3
    • 5244304444 scopus 로고
    • Efficient estimation of free energy divergences from Monte Carlo data
    • Bennett, C. H. (1976). Efficient estimation of free energy divergences from Monte Carlo data. Journal of Computational Physics, 22, 245-268.
    • (1976) Journal of Computational Physics , vol.22 , pp. 245-268
    • Bennett, C.H.1
  • 7
    • 0023686914 scopus 로고
    • Maximum likelihood analysis of spike trains of interacting nerve cells
    • Brillinger, D. (1988). Maximum likelihood analysis of spike trains of interacting nerve cells. Biological Cyberkinetics, 59, 189-200.
    • (1988) Biological Cyberkinetics , vol.59 , pp. 189-200
    • Brillinger, D.1
  • 8
    • 0000059288 scopus 로고
    • Nerve cell spike train data analysis: A progression of technique
    • Brillinger, D. (1992). Nerve cell spike train data analysis: A progression of technique. Journal of the American Statistical Association, 87, 260-271.
    • (1992) Journal of the American Statistical Association , vol.87 , pp. 260-271
    • Brillinger, D.1
  • 9
    • 1542615171 scopus 로고    scopus 로고
    • Recursive Bayesian decoding of motor cortical signals by particle filtering
    • Brockwell, A., Rojas, A., & Kass, R. (2004). Recursive Bayesian decoding of motor cortical signals by particle filtering. Journal of Neurophysiology, 91, 1899-1907.
    • (2004) Journal of Neurophysiology , vol.91 , pp. 1899-1907
    • Brockwell, A.1    Rojas, A.2    Kass, R.3
  • 10
    • 0032273615 scopus 로고    scopus 로고
    • General methods for monitoring convergence of iterative simulations
    • Brooks, S., & Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Statist., 7, 434-455.
    • (1998) J. Comput. Graph. Statist. , vol.7 , pp. 434-455
    • Brooks, S.1    Gelman, A.2
  • 12
    • 0032530363 scopus 로고    scopus 로고
    • A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells
    • Brown, E., Frank, L., Tang, D., Quirk, M., & Wilson, M. (1998). A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. Journal of Neuroscience, 18, 7411-7425.
    • (1998) Journal of Neuroscience , vol.18 , pp. 7411-7425
    • Brown, E.1    Frank, L.2    Tang, D.3    Quirk, M.4    Wilson, M.5
  • 13
    • 21844487061 scopus 로고
    • Monte Carlo EM estimation for time series models involving counts
    • Chan, K. S., & Ledolter, J. (1995). Monte Carlo EM estimation for time series models involving counts. Journal of the American Statistical Association, 90(429), 242-252.
    • (1995) Journal of the American Statistical Association , vol.90 , Issue.429 , pp. 242-252
    • Chan, K.S.1    Ledolter, J.2
  • 14
    • 0013028436 scopus 로고    scopus 로고
    • A simple white noise analysis of neuronal light responses
    • Chichilnisky, E. (2001). A simple white noise analysis of neuronal light responses. Network: Computation in Neural Systems, 12, 199-213.
    • (2001) Network: Computation in Neural Systems , vol.12 , pp. 199-213
    • Chichilnisky, E.1
  • 15
    • 78650594632 scopus 로고    scopus 로고
    • Hierarchical Bayesian modeling and Markov chain Monte Carlo sampling for tuning curve analysis
    • Cronin, B., Stevenson, I. H., Sur, M., & Kording, K. P. (2009). Hierarchical Bayesian modeling and Markov chain Monte Carlo sampling for tuning curve analysis. J. Neurophysiol., 00379. 2009.
    • (2009) J. Neurophysiol. , pp. 00379
    • Cronin, B.1    Stevenson, I.H.2    Sur, M.3    Kording, K.P.4
  • 16
    • 20444434024 scopus 로고    scopus 로고
    • Estimation for state-space models: An approximate likelihood approach
    • Davis, R., & Rodriguez-Yam, G. (2005). Estimation for state-space models: An approximate likelihood approach. Statistica Sinica, 15, 381-406.
    • (2005) Statistica Sinica , vol.15 , pp. 381-406
    • Davis, R.1    Rodriguez-Yam, G.2
  • 18
    • 0010045457 scopus 로고    scopus 로고
    • Bayesian curve fitting with free-knot splines
    • DiMatteo, I., Genovese, C., & Kass, R. (2001). Bayesian curve fitting with free-knot splines. Biometrika, 88, 1055-1073.
    • (2001) Biometrika , vol.88 , pp. 1055-1073
    • Dimatteo, I.1    Genovese, C.2    Kass, R.3
  • 19
    • 0036828974 scopus 로고    scopus 로고
    • Connecting cortex to machines: Recent advances in brain interfaces
    • Donoghue, J. (2002). Connecting cortex to machines: Recent advances in brain interfaces. Nature Neuroscience, 5, 1085-1088.
    • (2002) Nature Neuroscience , vol.5 , pp. 1085-1088
    • Donoghue, J.1
  • 20
    • 0003665481 scopus 로고    scopus 로고
    • Doucet, A., de Freitas, N., & Gordon, N. (Eds.). Berlin: Springer
    • Doucet, A., de Freitas, N., & Gordon, N. (Eds.). (2001). Sequential Monte Carlo in practice. Berlin: Springer.
    • (2001) Sequential Monte Carlo in practice
  • 22
    • 1842733199 scopus 로고    scopus 로고
    • Dynamic analysis of neural encoding by point process adaptive filtering
    • Eden, U. T., Frank, L. M., Barbieri, R., Solo, V., & Brown, E. N. (2004). Dynamic analysis of neural encoding by point process adaptive filtering. Neural Comput., 16(5), 971-998.
    • (2004) Neural Comput , vol.16 , Issue.5 , pp. 971-998
    • Eden, U.T.1    Frank, L.M.2    Barbieri, R.3    Solo, V.4    Brown, E.N.5
  • 23
    • 33847716709 scopus 로고    scopus 로고
    • Construction of point process adaptive filter algorithms for neural systems using sequential Monte Carlo methods
    • Ergun, A., Barbieri, R., Eden, U., Wilson, M., & Brown, E. (2007). Construction of point process adaptive filter algorithms for neural systems using sequential Monte Carlo methods. IEEE Transactions on Biomedical Engineering, 54, 419-428.
    • (2007) IEEE Transactions on Biomedical Engineering , vol.54 , pp. 419-428
    • Ergun, A.1    Barbieri, R.2    Eden, U.3    Wilson, M.4    Brown, E.5
  • 24
    • 0042042167 scopus 로고    scopus 로고
    • Sampling from the posterior distribution in generalized linear mixed models
    • Gamerman, D. (1997). Sampling from the posterior distribution in generalized linear mixed models. Statistics and Computing, 7(1), 57-68.
    • (1997) Statistics and Computing , vol.7 , Issue.1 , pp. 57-68
    • Gamerman, D.1
  • 25
    • 0001053807 scopus 로고    scopus 로고
    • Markov chain Monte Carlo for dynamic generalised linear models
    • Gamerman, D. (1998). Markov chain Monte Carlo for dynamic generalised linear models. Biometrika, 85(1), 215-227.
    • (1998) Biometrika , vol.85 , Issue.1 , pp. 215-227
    • Gamerman, D.1
  • 26
    • 0004012196 scopus 로고    scopus 로고
    • Boca Raton, FL: Chapman and Hall/CRC
    • Gelman, A. (2004). Bayesian data analysis. Boca Raton, FL: Chapman and Hall/CRC.
    • (2004) Bayesian data analysis
    • Gelman, A.1
  • 28
    • 79952479743 scopus 로고    scopus 로고
    • Bayesian population decoding of spiking neurons
    • Gerwinn, S., Macke, J. H., & Bethge, M. (2009). Bayesian population decoding of spiking neurons. Front. Comput. Neurosci., 3(21), 1-28.
    • (2009) Front. Comput. Neurosci. , vol.3 , Issue.21 , pp. 1-28
    • Gerwinn, S.1    Macke, J.H.2    Bethge, M.3
  • 29
    • 84972511893 scopus 로고
    • Practical Markov chain Monte Carlo
    • Geyer, C. J. (1992). Practical Markov chain Monte Carlo. Statistical Science, 7, 473-483.
    • (1992) Statistical Science , vol.7 , pp. 473-483
    • Geyer, C.J.1
  • 30
    • 0001422224 scopus 로고
    • Derivative-free adaptive rejection sampling for Gibbs sampling
    • J. Bernardo, J. Berger, A. Dawid, & A. Smith (Eds.), New York: Oxford University Press
    • Gilks, W. R. (1992). Derivative-free adaptive rejection sampling for Gibbs sampling. In J. Bernardo, J. Berger, A. Dawid, & A. Smith (Eds.), Bayesian statistics 4 (pp. 641-649). New York: Oxford University Press.
    • (1992) Bayesian statistics , vol.4 , pp. 641-649
    • Gilks, W.R.1
  • 31
    • 0000324169 scopus 로고
    • Adaptive rejection sampling for Gibbs sampling
    • Gilks, W., & Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Applied Statistics, 41, 337-348
    • (1992) Applied Statistics , vol.41 , pp. 337-348
    • Gilks, W.1    Wild, P.2
  • 33
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 34
    • 67049095670 scopus 로고    scopus 로고
    • Smoothing of, and parameter estimation from, noisy biophysical recordings
    • Huys, Q., & Paninski, L. (2009). Smoothing of, and parameter estimation from, noisy biophysical recordings. PLoS Comput. Biol., 5(5), e1000379.
    • (2009) PLoS Comput. Biol. , vol.5 , Issue.5
    • Huys, Q.1    Paninski, L.2
  • 35
    • 8644257632 scopus 로고    scopus 로고
    • Applications of hybrid Monte Carlo to Bayesian generalized linear models: Quasicomplete separation and neural networks
    • Ishwaran, H. (1999). Applications of hybrid Monte Carlo to Bayesian generalized linear models: Quasicomplete separation and neural networks. Journal of Computational and Graphical Statistics, 8, 779-799.
    • (1999) Journal of Computational and Graphical Statistics , vol.8 , pp. 779-799
    • Ishwaran, H.1
  • 37
    • 37549006823 scopus 로고    scopus 로고
    • Monte Carlo estimation for nonlinear non-gaussian state space models
    • Jungbacker, B., & Koopman, S. J. (2007). Monte Carlo estimation for nonlinear non-gaussian state space models. Biometrika, 94(4), 827-839.
    • (2007) Biometrika , vol.94 , Issue.4 , pp. 827-839
    • Jungbacker, B.1    Koopman, S.J.2
  • 38
    • 23944502754 scopus 로고    scopus 로고
    • Population coding of self-motion:Applying Bayesian analysis to a population of visual interneurons in the fly
    • Karmeier, K., Krapp, H., & Egelhaaf, M. (2005). Population coding of self-motion:Applying Bayesian analysis to a population of visual interneurons in the fly. Journal of Neurophysiology, 94, 2182-2194.
    • (2005) Journal of Neurophysiology , vol.94 , pp. 2182-2194
    • Karmeier, K.1    Krapp, H.2    Egelhaaf, M.3
  • 39
    • 0041170297 scopus 로고
    • Laplace's method in Bayesian analysis
    • N. Flournoy & R. Tsutakawa (Eds.), Providence, RI: American Mathematical Society
    • Kass, R., Tierney, L., & Raftery, A. (1991). Laplace's method in Bayesian analysis. In N. Flournoy & R. Tsutakawa (Eds.), Statistical multiple integration (pp. 89-99).Providence, RI: American Mathematical Society.
    • (1991) Statistical multiple integration , pp. 89-99
    • Kass, R.1    Tierney, L.2    Raftery, A.3
  • 40
    • 68949150856 scopus 로고    scopus 로고
    • Decoding V1 neuronal activity using particle filtering with Volterra kernels
    • S. Becker, S. Thrün, & K. Obermayer (Eds.)
    • Kelly, R., & Lee, T. (2004). Decoding V1 neuronal activity using particle filtering with Volterra kernels. In S. Becker, S. Thrün, & K. Obermayer (Eds.), Advances in neural information processing systems, 15, 1359-1366.
    • (2004) Advances in neural information processing systems , vol.15 , pp. 1359-1366
    • Kelly, R.1    Lee, T.2
  • 42
    • 34250130646 scopus 로고
    • Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions
    • Kipnis, C., & Varadhan, S. R. S. (1986). Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phys., 104, 1-19.
    • (1986) Comm. Math. Phys. , vol.104 , pp. 1-19
    • Kipnis, C.1    Varadhan, S.R.S.2
  • 43
    • 4444293540 scopus 로고    scopus 로고
    • What does the eye tell the brain? Development of a system for the large scale recording of retinal output activity
    • Litke, A., Bezayiff, N., Chichilnisky, E., Cunningham, W., Dabrowski, W., Grillo, A., et al. (2004). What does the eye tell the brain? Development of a system for the large scale recording of retinal output activity. IEEE Trans. Nucl. Sci., 2, 1434-1440.
    • (2004) IEEE Trans. Nucl. Sci. , vol.2 , pp. 1434-1440
    • Litke, A.1    Bezayiff, N.2    Chichilnisky, E.3    Cunningham, W.4    Dabrowski, W.5    Grillo, A.6
  • 47
    • 21444451325 scopus 로고    scopus 로고
    • Simulating ratios of normalizing constants via a simple identity: A theoretical exploration
    • Meng, X. L., & Wong, W. H. (1996). Simulating ratios of normalizing constants via a simple identity: A theoretical exploration. Statistica Sinica, 6, 831-860.
    • (1996) Statistica Sinica , vol.6 , pp. 831-860
    • Meng, X.L.1    Wong, W.H.2
  • 51
    • 0003078723 scopus 로고
    • Approximate Bayesian inference with the weighted likelihood bootstrap
    • Series B (Methodological)
    • Newton, M. A., & Raftery, A. E. (1994). Approximate Bayesian inference with the weighted likelihood bootstrap. Journal of the Royal Statistical Society. Series B (Methodological), 56(1), 3-48.
    • (1994) Journal of the Royal Statistical Society , vol.56 , Issue.1 , pp. 3-48
    • Newton, M.A.1    Raftery, A.E.2
  • 52
    • 0041877169 scopus 로고    scopus 로고
    • Estimation of entropy and mutual information
    • Paninski, L. (2003). Estimation of entropy and mutual information. Neural Computation, 15, 1191-1253.
    • (2003) Neural Computation , vol.15 , pp. 1191-1253
    • Paninski, L.1
  • 53
    • 9744274025 scopus 로고    scopus 로고
    • Maximum likelihood estimation of cascade point-process neural encoding models
    • Paninski, L. (2004). Maximum likelihood estimation of cascade point-process neural encoding models. Network: Computation in Neural Systems, 15, 243-262.
    • (2004) Network: Computation in Neural Systems , vol.15 , pp. 243-262
    • Paninski, L.1
  • 55
    • 4744360960 scopus 로고    scopus 로고
    • Super-linear population encoding of dynamic hand trajectory in primary motor cortex
    • Paninski, L., Fellows, M., Shoham, S., Hatsopoulos, N., & Donoghue, J. (2004). Super-linear population encoding of dynamic hand trajectory in primary motor cortex. J. Neurosci., 24, 8551-8561.
    • (2004) J. Neurosci. , vol.24 , pp. 8551-8561
    • Paninski, L.1    Fellows, M.2    Shoham, S.3    Hatsopoulos, N.4    Donoghue, J.5
  • 56
    • 78651367135 scopus 로고    scopus 로고
    • Statistical models of spike trains
    • C. Laing & G. Lord (Eds.), New York: Oxford University Press
    • Paninski, L., Iyengar, S., Kass, R., & Brown, E. (2008). Statistical models of spike trains. In C. Laing & G. Lord (Eds.), Stochastic methods in neuroscience. New York: Oxford University Press.
    • (2008) Stochastic methods in neuroscience
    • Paninski, L.1    Iyengar, S.2    Kass, R.3    Brown, E.4
  • 57
    • 78650608745 scopus 로고    scopus 로고
    • Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains
    • Pillow, J. W., Ahmadian, Y., & Paninski, L. (2011). Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains. Neural Computation, 23(1), 1-45.
    • (2011) Neural Computation , vol.23 , Issue.1 , pp. 1-45
    • Pillow, J.W.1    Ahmadian, Y.2    Paninski, L.3
  • 58
    • 50049100348 scopus 로고    scopus 로고
    • Spa-tiotemporal correlations and visual signaling in a complete neuronal population
    • Pillow, J., Shlens, J., Paninski, L., Sher, A., Litke, A., Chichilnisky, E., et al. (2008). Spa-tiotemporal correlations and visual signaling in a complete neuronal population. Nature, 454, 995-999.
    • (2008) Nature , vol.454 , pp. 995-999
    • Pillow, J.1    Shlens, J.2    Paninski, L.3    Sher, A.4    Litke, A.5    Chichilnisky, E.6
  • 59
    • 0031279625 scopus 로고    scopus 로고
    • The use of m-sequences in the analysis of visual neurons: Linear receptive field properties
    • Reid, R. C., Victor, J. D., & Shapley, R. M. (1997). The use of m-sequences in the analysis of visual neurons: Linear receptive field properties. Visual Neuroscience, 14(6), 1015-1027.
    • (1997) Visual Neuroscience , vol.14 , Issue.6 , pp. 1015-1027
    • Reid, R.C.1    Victor, J.D.2    Shapley, R.M.3
  • 62
    • 0000936678 scopus 로고    scopus 로고
    • Optimal scaling of discrete approximations to Langevin diffusions
    • Roberts, G., & Rosenthal, J. (1998). Optimal scaling of discrete approximations to Langevin diffusions. J. R. Statist. Soc. B, 160, 255-268.
    • (1998) J. R. Statist. Soc. B , vol.160 , pp. 255-268
    • Roberts, G.1    Rosenthal, J.2
  • 63
    • 0013037129 scopus 로고    scopus 로고
    • Optimal scaling for various Metropolis-Hastings algorithms
    • Roberts, G., & Rosenthal, J. (2001). Optimal scaling for various Metropolis-Hastings algorithms. Statistical Science, 16, 351-367.
    • (2001) Statistical Science , vol.16 , pp. 351-367
    • Roberts, G.1    Rosenthal, J.2
  • 64
    • 85132364916 scopus 로고    scopus 로고
    • Exponential convergence of Langevin diffusions and their discrete approximations
    • Roberts, G. O., & Tweedie, R. L. (1996). Exponential convergence of Langevin diffusions and their discrete approximations. Biometrika, 2, 341-363.
    • (1996) Biometrika , vol.2 , pp. 341-363
    • Roberts, G.O.1    Tweedie, R.L.2
  • 65
    • 0001807778 scopus 로고
    • Theoretical considerations for the analysis of population coding in motor cortex
    • Sanger, T. (1994). Theoretical considerations for the analysis of population coding in motor cortex. Neural Computation, 6, 12-21.
    • (1994) Neural Computation , vol.6 , pp. 12-21
    • Sanger, T.1
  • 66
    • 0003258788 scopus 로고    scopus 로고
    • Likelihood analysis of non-gaussian measurement time series
    • Shephard, N., & Pitt, M.K.(1997). Likelihood analysis of non-gaussian measurement time series. Biometrika, 84(3), 653-667.
    • (1997) Biometrika , vol.84 , Issue.3 , pp. 653-667
    • Shephard, N.1    Pitt, M.K.2
  • 67
    • 33748175149 scopus 로고    scopus 로고
    • The structure of multi-neuron firing patterns in primate retina
    • Shlens, J., Field, G. D., Gauthier, J. L., Grivich, M. I., Petrusca, D., Sher, A., et al. (2006). The structure of multi-neuron firing patterns in primate retina. J. Neurosci., 26(32), 8254-8266.
    • (2006) J. Neurosci. , vol.26 , Issue.32 , pp. 8254-8266
    • Shlens, J.1    Field, G.D.2    Gauthier, J.L.3    Grivich, M.I.4    Petrusca, D.5    Sher, A.6
  • 69
    • 2542438416 scopus 로고    scopus 로고
    • Characterization of neural responses with stochastic stimuli
    • M. S. Gazzaniga (Ed.), (3rd ed.). Cambridge, MA: MIT Press
    • Simoncelli, E., Paninski, L., Pillow, J., & Schwartz, O. (2004). Characterization of neural responses with stochastic stimuli. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (3rd ed.). Cambridge, MA: MIT Press.
    • (2004) The cognitive neurosciences
    • Simoncelli, E.1    Paninski, L.2    Pillow, J.3    Schwartz, O.4
  • 70
    • 1642458166 scopus 로고    scopus 로고
    • Dynamic analysis of learning in behavioral experiments
    • Smith, A. C., Frank, L. M., Wirth, S., Yanike, M., Hu, D., Kubota, Y., et al. (2004). Dynamic analysis of learning in behavioral experiments. J. Neurosci., 24(2), 447-461.
    • (2004) J. Neurosci. , vol.24 , Issue.2 , pp. 447-461
    • Smith, A.C.1    Frank, L.M.2    Wirth, S.3    Yanike, M.4    Hu, D.5    Kubota, Y.6
  • 71
    • 33947169864 scopus 로고    scopus 로고
    • Bayesian analysis of interleaved learning and response bias in behavioral experiments
    • Smith, A. C., Wirth, S., Suzuki, W. A., & Brown, E. N. (2007). Bayesian analysis of interleaved learning and response bias in behavioral experiments. J. Neurophysiol., 97(3), 2516-2524.
    • (2007) J. Neurophysiol. , vol.97 , Issue.3 , pp. 2516-2524
    • Smith, A.C.1    Wirth, S.2    Suzuki, W.A.3    Brown, E.N.4
  • 74
    • 78650606271 scopus 로고    scopus 로고
    • Decoding in neural systems: Stimulus reconstruction from nonlinear encoding
    • Piscataway, NJ: EMBS
    • Stanley, G., & Boloori, A. (2001). Decoding in neural systems: stimulus reconstruction from nonlinear encoding. In Proceedings of the Annual EMBS International Conference (p. 23). Piscataway, NJ: EMBS.
    • (2001) Proceedings of the Annual EMBS International Conference , pp. 23
    • Stanley, G.1    Boloori, A.2
  • 76
    • 0042235146 scopus 로고    scopus 로고
    • Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli
    • Theunissen, F., David, S., Singh, N., Hsu, A., Vinje, W., & Gallant, J. (2001). Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli. Network: Computation in Neural Systems, 12, 289-316.
    • (2001) Network: Computation in Neural Systems , vol.12 , pp. 289-316
    • Theunissen, F.1    David, S.2    Singh, N.3    Hsu, A.4    Vinje, W.5    Gallant, J.6
  • 78
    • 84950871099 scopus 로고
    • Accurate approximations for posterior moments and marginal densities
    • Tierney, L., & Kadane, J. B. (1986). Accurate approximations for posterior moments and marginal densities. Journal of the American Statistical Association, 81(393), 82-86.
    • (1986) Journal of the American Statistical Association , vol.81 , Issue.393 , pp. 82-86
    • Tierney, L.1    Kadane, J.B.2
  • 79
    • 12544253489 scopus 로고    scopus 로고
    • A point process framework for relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects
    • Truccolo, W., Eden, U., Fellows, M., Donoghue, J., & Brown, E. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects. Journal of Neurophysiology, 93, 1074-1089.
    • (2005) Journal of Neurophysiology , vol.93 , pp. 1074-1089
    • Truccolo, W.1    Eden, U.2    Fellows, M.3    Donoghue, J.4    Brown, E.5
  • 80
    • 0010927752 scopus 로고
    • Statistical analysis for the angular central gaussian distribution on the sphere
    • Tyler, D. E. (1987). Statistical analysis for the angular central gaussian distribution on the sphere. Biometrika, 74, 579-859.
    • (1987) Biometrika , vol.74 , pp. 579-859
    • Tyler, D.E.1
  • 82
    • 47949099044 scopus 로고    scopus 로고
    • An implementation of Bayesian adaptive regression splines (BARS) in C with S and R wrappers
    • Wallstrom, G., Liebner, J., & Kass, R. E. (2007). An implementation of Bayesian adaptive regression splines (BARS) in C with S and R wrappers. Journal of Statistical Software, 26(1), 1-21.
    • (2007) Journal of Statistical Software , vol.26 , Issue.1 , pp. 1-21
    • Wallstrom, G.1    Liebner, J.2    Kass, R.E.3
  • 83
    • 0030686449 scopus 로고    scopus 로고
    • Decoding visual information from a population of retinal ganglion cells
    • Warland, D., Reinagel, P., & Meister, M. (1997). Decoding visual information from a population of retinal ganglion cells. Journal of Neurophysiology, 78, 2336-2350.
    • (1997) Journal of Neurophysiology , vol.78 , pp. 2336-2350
    • Warland, D.1    Reinagel, P.2    Meister, M.3
  • 85
    • 67649610065 scopus 로고    scopus 로고
    • Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity
    • Yu, B. M., Cunningham, J. P., Santhanam, G., Ryu, S. I., Shenoy, K. V., & Sahani, M. (2009). Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. J. Neurophysiol., 102(1), 614-635.
    • (2009) J. Neurophysiol. , vol.102 , Issue.1 , pp. 614-635
    • Yu, B.M.1    Cunningham, J.P.2    Santhanam, G.3    Ryu, S.I.4    Shenoy, K.V.5    Sahani, M.6
  • 86
    • 0031930592 scopus 로고    scopus 로고
    • Interpreting neuronal population activity by reconstruction: Unified framework with application to hippocampal place cells
    • Zhang, K., Ginzburg, I., McNaughton, B., & Sejnowski, T. (1998). Interpreting neuronal population activity by reconstruction: Unified framework with application to hippocampal place cells. Journal of Neurophysiology, 79, 1017-1044.
    • (1998) Journal of Neurophysiology , vol.79 , pp. 1017-1044
    • Zhang, K.1    Ginzburg, I.2    Mcnaughton, B.3    Sejnowski, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.