-
38
-
-
11244282931
-
-
Gaussian, Inc., Wallingford, CT
-
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr. , T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, GAUSSIAN 03 (Revision D.01), Gaussian, Inc., Wallingford, CT, 2004
-
(2004)
GAUSSIAN 03 (Revision D.01)
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Scuseria, G.E.4
Robb, M.A.5
Cheeseman, J.R.6
Montgomery Jr., J.A.7
Vreven, T.8
Kudin, K.N.9
Burant, J.C.10
Millam, J.M.11
Iyengar, S.S.12
Tomasi, J.13
Barone, V.14
Mennucci, B.15
Cossi, M.16
Scalmani, G.17
Rega, N.18
Petersson, G.A.19
Nakatsuji, H.20
Hada, M.21
Ehara, M.22
Toyota, K.23
Fukuda, R.24
Hasegawa, J.25
Ishida, M.26
Nakajima, T.27
Honda, Y.28
Kitao, O.29
Nakai, H.30
Klene, M.31
Li, X.32
Knox, J.E.33
Hratchian, H.P.34
Cross, J.B.35
Bakken, V.36
Adamo, C.37
Jaramillo, J.38
Gomperts, R.39
Stratmann, R.E.40
Yazyev, O.41
Austin, A.J.42
Cammi, R.43
Pomelli, C.44
Ochterski, J.45
Ayala, P.Y.46
Morokuma, K.47
Voth, G.A.48
Salvador, P.49
Dannenberg, J.J.50
Zakrzewski, V.G.51
Dapprich, S.52
Daniels, A.D.53
Strain, M.C.54
Farkas, O.55
Malick, D.K.56
Rabuck, A.D.57
Raghavachari, K.58
Foresman, J.B.59
Ortiz, J.V.60
Cui, Q.61
Baboul, A.G.62
Clifford, S.63
Cioslowski, J.64
Stefanov, B.B.65
Liu, G.66
Liashenko, A.67
Piskorz, P.68
Komaromi, I.69
Martin, R.L.70
Fox, D.J.71
Keith, T.72
Al-Laham, M.A.73
Peng, C.Y.74
Nanayakkara, A.75
Challacombe, M.76
Gill, P.M.W.77
Johnson, B.G.78
Chen, W.79
Wong, M.W.80
Gonzalez, C.81
Pople, J.A.82
more..
-
51
-
-
84873055189
-
-
John Wiley & Sons, New York
-
W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, Ab Initio Molecular Orbital Theory, John Wiley & Sons, New York, 1986
-
(1986)
Ab Initio Molecular Orbital Theory
-
-
Hehre, W.J.1
Radom, L.2
Schleyer, V.P.R.3
Pople, J.A.4
-
55
-
-
18844424379
-
-
Johannes Kepler University, Linz, Similarly long "bonds" have been found in other terpene-related cases 6,7,38
-
N. Müller, A. Falk and G. Gsaller, Ball & Stick V.4.0a12, molecular graphics application for MacOS computers, Johannes Kepler University, Linz, 2004
-
(2004)
Ball & Stick V.4.0a12, Molecular Graphics Application for MacOS Computers
-
-
Müller, N.1
Falk, A.2
Gsaller, G.3
-
63
-
-
30744479220
-
-
See Supporting Information for details. We have exploited ammonia to assess structural distortions of carbocations previously 6 cit10 cit14 cit21 cit22 cit26 6,10,14,21,22,26
-
M. R. Siebert D. J. Tantillo J. Org. Chem. 2006 71 645 654
-
(2006)
J. Org. Chem.
, vol.71
, pp. 645-654
-
-
Siebert, M.R.1
Tantillo, D.J.2
-
74
-
-
0038341792
-
-
Pinene and camphene are also related to the sesquiterpenes bergamotene and santalene, respectively. See:
-
J. B. A. Hess Org. Lett. 2003 5 165 167
-
(2003)
Org. Lett.
, vol.5
, pp. 165-167
-
-
Hess, J.B.A.1
-
79
-
-
3242807342
-
-
We will describe calculations on these systems in due course In some cases, this may be a result of post-transition state bifurcations 13,23,43a,47
-
A. T. Kreipl W. A. Konig Phytochemistry 2004 65 2045 2049
-
(2004)
Phytochemistry
, vol.65
, pp. 2045-2049
-
-
Kreipl, A.T.1
Konig, W.A.2
-
80
-
-
54749103800
-
-
The camphyl cation was also studied in detail by Sorensen and co-workers using B3LYP, MP2, MP3(full), MP4(SDQ) and QCI calculations; see:
-
D. H. Ess S. E. Wheeler R. R. lafe L. Xu N. Celebi-Ölcüm K. N. Houk Angew. Chem., Int. Ed. 2008 47 7592 7601
-
(2008)
Angew. Chem., Int. Ed.
, vol.47
, pp. 7592-7601
-
-
Ess, D.H.1
Wheeler, S.E.2
Lafe, R.R.3
Xu, L.4
Celebi-Ölcüm, N.5
Houk, K.N.6
-
82
-
-
77957661412
-
-
note
-
exo⋯N interaction is favorable for deprotonation to form α-pinene and the C10-H⋯N interaction is favorable for deprotonation to form β-pinene. Computations on these deprotonation reactions are described in the Supporting Information
-
-
-
-
83
-
-
77957670092
-
-
note
-
-1. See Supporting Information for details
-
-
-
-
84
-
-
77957681323
-
-
note
-
18
-
-
-
-
85
-
-
77957659634
-
-
note
-
The B3LYP/6-31G(d) method was used for all of the pyrophosphate complexes due to their size. Test calculations using B3LYP/6-31+G(d,p) gave similar results. Details can be found in the Supporting Information. We also performed single point energy calculations using the BB1K, mPWB1K and MP2 methods on the B3LYP geometries shown in Fig. 7. The results led to similar conclusions as those based on the B3LYP/6-31G(d) calculations; see Supporting Information for these energies
-
-
-
-
86
-
-
77957663056
-
-
note
-
Our attempts included the use of constrained calculations and even larger models involving 3 magnesium ions; invariably, however, C-O bond formation occurred. We did find transition state structures for the direct interconversions of the pinyl cation and the camphyl cation in the presence of ammonia; see Supporting Information for details
-
-
-
|