-
1
-
-
34250773451
-
Mechanisms of obesity-associated insulin resistance: many choices on the menu
-
Qatanani M., Lazar M.A. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev. 2007, 21:1443-1455.
-
(2007)
Genes Dev.
, vol.21
, pp. 1443-1455
-
-
Qatanani, M.1
Lazar, M.A.2
-
2
-
-
1242343842
-
Genetic basis of congenital generalized lipodystrophy
-
Agarwal A.K., et al. Genetic basis of congenital generalized lipodystrophy. Int. J. Obes. Relat. Metab. Disord. 2004, 28:336-339.
-
(2004)
Int. J. Obes. Relat. Metab. Disord.
, vol.28
, pp. 336-339
-
-
Agarwal, A.K.1
-
3
-
-
60049099162
-
Antiretroviral-related adipocyte dysfunction and lipodystrophy in HIV-infected patients: alteration of the PPARgamma-dependent pathways
-
Caron M., et al. Antiretroviral-related adipocyte dysfunction and lipodystrophy in HIV-infected patients: alteration of the PPARgamma-dependent pathways. PPAR Res. 2009, 2009:507141.
-
(2009)
PPAR Res.
, vol.2009
, pp. 507141
-
-
Caron, M.1
-
4
-
-
76049109697
-
Drug-induced lipotoxicity: lipodystrophy associated with HIV-1 infection and antiretroviral treatment
-
Villarroya F., et al. Drug-induced lipotoxicity: lipodystrophy associated with HIV-1 infection and antiretroviral treatment. Biochim. Biophys. Acta. 2010, 1801:392-399.
-
(2010)
Biochim. Biophys. Acta.
, vol.1801
, pp. 392-399
-
-
Villarroya, F.1
-
5
-
-
0036578783
-
AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34
-
Agarwal A.K., et al. AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat. Genet. 2002, 31:21-23.
-
(2002)
Nat. Genet.
, vol.31
, pp. 21-23
-
-
Agarwal, A.K.1
-
6
-
-
0034941121
-
Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13
-
Magre J., et al. Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat. Genet. 2001, 28:365-370.
-
(2001)
Nat. Genet.
, vol.28
, pp. 365-370
-
-
Magre, J.1
-
7
-
-
41549146084
-
Association of a homozygous nonsense caveolin-1 mutation with Berardinelli-Seip congenital lipodystrophy
-
Kim C.A., et al. Association of a homozygous nonsense caveolin-1 mutation with Berardinelli-Seip congenital lipodystrophy. J. Clin. Endocrinol. Metab. 2008, 93:1129-1134.
-
(2008)
J. Clin. Endocrinol. Metab.
, vol.93
, pp. 1129-1134
-
-
Kim, C.A.1
-
8
-
-
70349195987
-
Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy
-
Hayashi Y.K., et al. Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J. Clin. Invest. 2009, 119:2623-2633.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 2623-2633
-
-
Hayashi, Y.K.1
-
9
-
-
0041919374
-
Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia
-
Agarwal A.K., et al. Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. Hum. Mol. Genet. 2003, 12:1995-2001.
-
(2003)
Hum. Mol. Genet.
, vol.12
, pp. 1995-2001
-
-
Agarwal, A.K.1
-
10
-
-
0037673950
-
Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome
-
Eriksson M., et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 2003, 423:293-298.
-
(2003)
Nature
, vol.423
, pp. 293-298
-
-
Eriksson, M.1
-
11
-
-
10744229294
-
Lamin a truncation in Hutchinson-Gilford progeria
-
De Sandre-Giovannoli A., et al. Lamin a truncation in Hutchinson-Gilford progeria. Science 2003, 300:2055.
-
(2003)
Science
, vol.300
, pp. 2055
-
-
De Sandre-Giovannoli, A.1
-
12
-
-
0033951216
-
LMNA, encoding lamin A/C, is mutated in partial lipodystrophy
-
Shackleton S., et al. LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nat. Genet. 2000, 24:153-156.
-
(2000)
Nat. Genet.
, vol.24
, pp. 153-156
-
-
Shackleton, S.1
-
13
-
-
0034059075
-
Nuclear lamin A/C R482Q mutation in canadian kindreds with Dunnigan-type familial partial lipodystrophy
-
Cao H., Hegele R.A. Nuclear lamin A/C R482Q mutation in canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum. Mol. Genet. 2000, 9:109-112.
-
(2000)
Hum. Mol. Genet.
, vol.9
, pp. 109-112
-
-
Cao, H.1
Hegele, R.A.2
-
14
-
-
0033599038
-
Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension
-
Barroso I., et al. Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 1999, 402:880-883.
-
(1999)
Nature
, vol.402
, pp. 880-883
-
-
Barroso, I.1
-
15
-
-
2542528670
-
A family with severe insulin resistance and diabetes due to a mutation in AKT2
-
George S., et al. A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science 2004, 304:1325-1328.
-
(2004)
Science
, vol.304
, pp. 1325-1328
-
-
George, S.1
-
16
-
-
70450220107
-
Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC
-
Rubio-Cabezas O., et al. Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC. EMBO Mol. Med. 2009, 1:280-287.
-
(2009)
EMBO Mol. Med.
, vol.1
, pp. 280-287
-
-
Rubio-Cabezas, O.1
-
17
-
-
1542510700
-
Acquired and inherited lipodystrophies
-
Garg A. Acquired and inherited lipodystrophies. N. Engl. J. Med. 2004, 350:1220-1234.
-
(2004)
N. Engl. J. Med.
, vol.350
, pp. 1220-1234
-
-
Garg, A.1
-
18
-
-
34548688187
-
Inherited lipodystrophies and the metabolic syndrome
-
Monajemi H., et al. Inherited lipodystrophies and the metabolic syndrome. Clin. Endocrinol. (Oxf). 2007, 67:479-484.
-
(2007)
Clin. Endocrinol. (Oxf).
, vol.67
, pp. 479-484
-
-
Monajemi, H.1
-
19
-
-
33845864967
-
Adipocytes as regulators of energy balance and glucose homeostasis
-
Rosen E.D., Spiegelman B.M. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 2006, 444:847-853.
-
(2006)
Nature
, vol.444
, pp. 847-853
-
-
Rosen, E.D.1
Spiegelman, B.M.2
-
20
-
-
38049184643
-
The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology
-
Szymanski K.M., et al. The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:20890-20895.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 20890-20895
-
-
Szymanski, K.M.1
-
21
-
-
39049151385
-
Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast
-
Fei W., et al. Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. J. Cell Biol. 2008, 180:473-482.
-
(2008)
J. Cell Biol.
, vol.180
, pp. 473-482
-
-
Fei, W.1
-
22
-
-
67349097875
-
Seipin deficiency alters fatty acid Delta9 desaturation and lipid droplet formation in Berardinelli-Seip congenital lipodystrophy
-
Boutet E., et al. Seipin deficiency alters fatty acid Delta9 desaturation and lipid droplet formation in Berardinelli-Seip congenital lipodystrophy. Biochimie. 2009, 91:796-803.
-
(2009)
Biochimie.
, vol.91
, pp. 796-803
-
-
Boutet, E.1
-
23
-
-
0037143752
-
Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity
-
Ntambi J.M., et al. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc. Natl. Acad. Sci. U. S. A. 2002, 99:11482-11486.
-
(2002)
Proc. Natl. Acad. Sci. U. S. A.
, vol.99
, pp. 11482-11486
-
-
Ntambi, J.M.1
-
24
-
-
50949112676
-
The human lipodystrophy gene BSCL2/seipin may be essential for normal adipocyte differentiation
-
Payne V.A., et al. The human lipodystrophy gene BSCL2/seipin may be essential for normal adipocyte differentiation. Diabetes 2008, 57:2055-2060.
-
(2008)
Diabetes
, vol.57
, pp. 2055-2060
-
-
Payne, V.A.1
-
25
-
-
70349323186
-
The human lipodystrophy gene product Berardinelli-Seip congenital lipodystrophy 2/seipin plays a key role in adipocyte differentiation
-
Chen W., et al. The human lipodystrophy gene product Berardinelli-Seip congenital lipodystrophy 2/seipin plays a key role in adipocyte differentiation. Endocrinology 2009, 150:4552-4561.
-
(2009)
Endocrinology
, vol.150
, pp. 4552-4561
-
-
Chen, W.1
-
26
-
-
66849089697
-
Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis
-
Takeuchi K., Reue K. Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Am. J. Physiol. Endocrinol. Metab. 2009, 296:E1195-E1209.
-
(2009)
Am. J. Physiol. Endocrinol. Metab.
, vol.296
-
-
Takeuchi, K.1
Reue, K.2
-
27
-
-
33744954152
-
A regulatory role for 1-acylglycerol-3-phosphate-O-acyltransferase 2 in adipocyte differentiation
-
Gale S.E., et al. A regulatory role for 1-acylglycerol-3-phosphate-O-acyltransferase 2 in adipocyte differentiation. J. Biol. Chem. 2006, 281:11082-11089.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 11082-11089
-
-
Gale, S.E.1
-
28
-
-
58749091644
-
Molecular mechanisms of hepatic steatosis and insulin resistance in the AGPAT2-deficient mouse model of congenital generalized lipodystrophy
-
Cortes V.A., et al. Molecular mechanisms of hepatic steatosis and insulin resistance in the AGPAT2-deficient mouse model of congenital generalized lipodystrophy. Cell Metab. 2009, 9:165-176.
-
(2009)
Cell Metab.
, vol.9
, pp. 165-176
-
-
Cortes, V.A.1
-
29
-
-
35648963077
-
A new role for caveolae as metabolic platforms
-
Ortegren U., et al. A new role for caveolae as metabolic platforms. Trends Endocrinol. Metab. 2007, 18:344-349.
-
(2007)
Trends Endocrinol. Metab.
, vol.18
, pp. 344-349
-
-
Ortegren, U.1
-
30
-
-
33846615966
-
The neck of caveolae is a distinct plasma membrane subdomain that concentrates insulin receptors in 3T3-L1 adipocytes
-
Foti M., et al. The neck of caveolae is a distinct plasma membrane subdomain that concentrates insulin receptors in 3T3-L1 adipocytes. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:1242-1247.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 1242-1247
-
-
Foti, M.1
-
31
-
-
0037040994
-
Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities
-
Razani B., et al. Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. J. Biol. Chem. 2002, 277:8635-8647.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 8635-8647
-
-
Razani, B.1
-
32
-
-
41549088813
-
Heterozygous CAV1 frameshift mutations (MIM 601047) in patients with atypical partial lipodystrophy and hypertriglyceridemia
-
Cao H., et al. Heterozygous CAV1 frameshift mutations (MIM 601047) in patients with atypical partial lipodystrophy and hypertriglyceridemia. Lipids Health Dis. 2008, 7:3.
-
(2008)
Lipids Health Dis.
, vol.7
, pp. 3
-
-
Cao, H.1
-
33
-
-
37649011760
-
PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function
-
Hill M.M., et al. PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 2008, 132:113-124.
-
(2008)
Cell
, vol.132
, pp. 113-124
-
-
Hill, M.M.1
-
34
-
-
53049091996
-
Deletion of Cavin/PTRF causes global loss of caveolae, dyslipidemia, and glucose intolerance
-
Liu L., et al. Deletion of Cavin/PTRF causes global loss of caveolae, dyslipidemia, and glucose intolerance. Cell Metab. 2008, 8:310-317.
-
(2008)
Cell Metab.
, vol.8
, pp. 310-317
-
-
Liu, L.1
-
35
-
-
33749332751
-
Temporal dynamics of tyrosine phosphorylation in insulin signaling
-
Schmelzle K., et al. Temporal dynamics of tyrosine phosphorylation in insulin signaling. Diabetes 2006, 55:2171-2179.
-
(2006)
Diabetes
, vol.55
, pp. 2171-2179
-
-
Schmelzle, K.1
-
36
-
-
33749589026
-
Association and insulin regulated translocation of hormone-sensitive lipase with PTRF
-
Aboulaich N., et al. Association and insulin regulated translocation of hormone-sensitive lipase with PTRF. Biochem. Biophys. Res. Commun. 2006, 350:657-661.
-
(2006)
Biochem. Biophys. Res. Commun.
, vol.350
, pp. 657-661
-
-
Aboulaich, N.1
-
37
-
-
28944446431
-
The many faces of PPARgamma
-
Lehrke M., Lazar M.A. The many faces of PPARgamma. Cell 2005, 123:993-999.
-
(2005)
Cell
, vol.123
, pp. 993-999
-
-
Lehrke, M.1
Lazar, M.A.2
-
38
-
-
70349387354
-
Functional implications of genetic variation in human PPARgamma
-
Jeninga E.H., et al. Functional implications of genetic variation in human PPARgamma. Trends Endocrinol. Metab. 2009, 20:380-387.
-
(2009)
Trends Endocrinol. Metab.
, vol.20
, pp. 380-387
-
-
Jeninga, E.H.1
-
39
-
-
33847350685
-
Hypotension, lipodystrophy, and insulin resistance in generalized PPARgamma-deficient mice rescued from embryonic lethality
-
Duan S.Z., et al. Hypotension, lipodystrophy, and insulin resistance in generalized PPARgamma-deficient mice rescued from embryonic lethality. J. Clin. Invest. 2007, 117:812-822.
-
(2007)
J. Clin. Invest.
, vol.117
, pp. 812-822
-
-
Duan, S.Z.1
-
40
-
-
9144229185
-
Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle
-
He W., et al. Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proc. Natl. Acad. Sci. U. S. A. 2003, 100:15712-15717.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 15712-15717
-
-
He, W.1
-
41
-
-
20944439189
-
Deletion of PPARgamma in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance
-
Jones J.R., et al. Deletion of PPARgamma in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:6207-6212.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 6207-6212
-
-
Jones, J.R.1
-
42
-
-
33750856072
-
Leptin deficiency unmasks the deleterious effects of impaired peroxisome proliferator-activated receptor gamma function (P465L PPARgamma) in mice
-
Gray S.L., et al. Leptin deficiency unmasks the deleterious effects of impaired peroxisome proliferator-activated receptor gamma function (P465L PPARgamma) in mice. Diabetes 2006, 55:2669-2677.
-
(2006)
Diabetes
, vol.55
, pp. 2669-2677
-
-
Gray, S.L.1
-
43
-
-
0036347096
-
Life at the edge: the nuclear envelope and human disease
-
Burke B., Stewart C.L. Life at the edge: the nuclear envelope and human disease. Nat. Rev. Mol. Cell Biol. 2002, 3:575-585.
-
(2002)
Nat. Rev. Mol. Cell Biol.
, vol.3
, pp. 575-585
-
-
Burke, B.1
Stewart, C.L.2
-
44
-
-
0036290274
-
Characterization of adiposity and metabolism in Lmna-deficient mice
-
Cutler D.A., et al. Characterization of adiposity and metabolism in Lmna-deficient mice. Biochem. Biophys. Res. Commun. 2002, 291:522-527.
-
(2002)
Biochem. Biophys. Res. Commun.
, vol.291
, pp. 522-527
-
-
Cutler, D.A.1
-
45
-
-
0028118904
-
The processing pathway of prelamin A
-
Sinensky M., et al. The processing pathway of prelamin A. J. Cell Sci. 1994, 107:61-67.
-
(1994)
J. Cell Sci.
, vol.107
, pp. 61-67
-
-
Sinensky, M.1
-
46
-
-
20444449733
-
Altered pre-lamin A processing is a common mechanism leading to lipodystrophy
-
Capanni C., et al. Altered pre-lamin A processing is a common mechanism leading to lipodystrophy. Hum. Mol. Genet. 2005, 14:1489-1502.
-
(2005)
Hum. Mol. Genet.
, vol.14
, pp. 1489-1502
-
-
Capanni, C.1
-
47
-
-
30844469352
-
Compound heterozygous ZMPSTE24 mutations reduce prelamin A processing and result in a severe progeroid phenotype
-
Shackleton S., et al. Compound heterozygous ZMPSTE24 mutations reduce prelamin A processing and result in a severe progeroid phenotype. J. Med. Genet. 2005, 42:e36.
-
(2005)
J. Med. Genet.
, vol.42
-
-
Shackleton, S.1
-
48
-
-
0036578920
-
Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice
-
Pendas A.M., et al. Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nat. Genet. 2002, 31:94-99.
-
(2002)
Nat. Genet.
, vol.31
, pp. 94-99
-
-
Pendas, A.M.1
-
49
-
-
51349153839
-
SREBP1 interaction with prelamin A forms: a pathogenic mechanism for lipodystrophic laminopathies
-
Maraldi N.M., et al. SREBP1 interaction with prelamin A forms: a pathogenic mechanism for lipodystrophic laminopathies. Adv. Enzyme Regul. 2008, 48:209-223.
-
(2008)
Adv. Enzyme Regul.
, vol.48
, pp. 209-223
-
-
Maraldi, N.M.1
-
50
-
-
33847410199
-
Analysis of genetic variation in Akt2/PKB-beta in severe insulin resistance, lipodystrophy, type 2 diabetes, and related metabolic phenotypes
-
Tan K., et al. Analysis of genetic variation in Akt2/PKB-beta in severe insulin resistance, lipodystrophy, type 2 diabetes, and related metabolic phenotypes. Diabetes 2007, 56:714-719.
-
(2007)
Diabetes
, vol.56
, pp. 714-719
-
-
Tan, K.1
-
51
-
-
0035368548
-
Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta)
-
Cho H., et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 2001, 292:1728-1731.
-
(2001)
Science
, vol.292
, pp. 1728-1731
-
-
Cho, H.1
-
52
-
-
85047693348
-
Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta
-
Garofalo R.S., et al. Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta. J. Clin. Invest. 2003, 112:197-208.
-
(2003)
J. Clin. Invest.
, vol.112
, pp. 197-208
-
-
Garofalo, R.S.1
-
53
-
-
48749103552
-
FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets
-
Nishino N., et al. FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J. Clin. Invest. 2008, 118:2808-2821.
-
(2008)
J. Clin. Invest.
, vol.118
, pp. 2808-2821
-
-
Nishino, N.1
-
54
-
-
51449123610
-
Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of fsp27 deficient mice
-
Toh S.Y., et al. Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of fsp27 deficient mice. PLoS ONE 2008, 3:e2890.
-
(2008)
PLoS ONE
, vol.3
-
-
Toh, S.Y.1
-
55
-
-
55749101777
-
Genome-wide profiling of PPAR{gamma}:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis
-
Nielsen R., et al. Genome-wide profiling of PPAR{gamma}:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis. Genes Dev. 2008, 22:2953-2967.
-
(2008)
Genes Dev.
, vol.22
, pp. 2953-2967
-
-
Nielsen, R.1
-
56
-
-
55749095056
-
PPAR{gamma} and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale
-
Lefterova M.I., et al. PPAR{gamma} and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes Dev. 2008, 22:2941-2952.
-
(2008)
Genes Dev.
, vol.22
, pp. 2941-2952
-
-
Lefterova, M.I.1
-
57
-
-
54449088298
-
Transcriptional activation of Cidec by PPARgamma2 in adipocyte
-
Kim Y.J., et al. Transcriptional activation of Cidec by PPARgamma2 in adipocyte. Biochem. Biophys. Res. Commun. 2008, 377:297-302.
-
(2008)
Biochem. Biophys. Res. Commun.
, vol.377
, pp. 297-302
-
-
Kim, Y.J.1
-
58
-
-
41449098953
-
Hepatic steatosis in leptin-deficient mice is promoted by the PPARgamma target gene Fsp27
-
Matsusue K., et al. Hepatic steatosis in leptin-deficient mice is promoted by the PPARgamma target gene Fsp27. Cell Metab. 2008, 7:302-311.
-
(2008)
Cell Metab.
, vol.7
, pp. 302-311
-
-
Matsusue, K.1
-
59
-
-
33748942837
-
Transcriptional control of adipocyte formation
-
Farmer S.R. Transcriptional control of adipocyte formation. Cell Metab. 2006, 4:263-273.
-
(2006)
Cell Metab.
, vol.4
, pp. 263-273
-
-
Farmer, S.R.1
-
60
-
-
0036537888
-
A novel interaction between lamin A and SREBP1: implications for partial lipodystrophy and other laminopathies
-
Lloyd D.J., et al. A novel interaction between lamin A and SREBP1: implications for partial lipodystrophy and other laminopathies. Hum. Mol. Genet. 2002, 11:769-777.
-
(2002)
Hum. Mol. Genet.
, vol.11
, pp. 769-777
-
-
Lloyd, D.J.1
-
61
-
-
0034987343
-
The HIV protease inhibitor indinavir impairs sterol regulatory element-binding protein-1 intranuclear localization, inhibits preadipocyte differentiation, and induces insulin resistance
-
Caron M., et al. The HIV protease inhibitor indinavir impairs sterol regulatory element-binding protein-1 intranuclear localization, inhibits preadipocyte differentiation, and induces insulin resistance. Diabetes 2001, 50:1378-1388.
-
(2001)
Diabetes
, vol.50
, pp. 1378-1388
-
-
Caron, M.1
-
62
-
-
77952552642
-
The Akt-SREBP nexus: cell signaling meets lipid metabolism
-
Krycer J.R., et al. The Akt-SREBP nexus: cell signaling meets lipid metabolism. Trends Endocrinol. Metab. 2010, 21:268-276.
-
(2010)
Trends Endocrinol. Metab.
, vol.21
, pp. 268-276
-
-
Krycer, J.R.1
-
63
-
-
3843061127
-
Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver
-
Chen G., et al. Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver. Proc. Natl. Acad. Sci. U. S. A. 2004, 101:11245-11250.
-
(2004)
Proc. Natl. Acad. Sci. U. S. A.
, vol.101
, pp. 11245-11250
-
-
Chen, G.1
-
64
-
-
33744732467
-
Involvement of Akt in ER-to-Golgi transport of SCAP/SREBP: a link between a key cell proliferative pathway and membrane synthesis
-
Du X., et al. Involvement of Akt in ER-to-Golgi transport of SCAP/SREBP: a link between a key cell proliferative pathway and membrane synthesis. Mol. Biol. Cell 2006, 17:2735-2745.
-
(2006)
Mol. Biol. Cell
, vol.17
, pp. 2735-2745
-
-
Du, X.1
-
65
-
-
70450283986
-
Insulin enhances the biogenesis of nuclear sterol regulatory element-binding protein (SREBP)-1c by posttranscriptional down-regulation of Insig-2A and its dissociation from SREBP cleavage-activating protein (SCAP).SREBP-1c complex
-
Yellaturu C.R., et al. Insulin enhances the biogenesis of nuclear sterol regulatory element-binding protein (SREBP)-1c by posttranscriptional down-regulation of Insig-2A and its dissociation from SREBP cleavage-activating protein (SCAP).SREBP-1c complex. J. Biol. Chem. 2009, 284:31726-31734.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 31726-31734
-
-
Yellaturu, C.R.1
-
66
-
-
14144251157
-
Distinct roles of insulin and liver X receptor in the induction and cleavage of sterol regulatory element-binding protein-1c
-
Hegarty B.D., et al. Distinct roles of insulin and liver X receptor in the induction and cleavage of sterol regulatory element-binding protein-1c. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:791-796.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 791-796
-
-
Hegarty, B.D.1
-
67
-
-
23844530704
-
Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF(Fbw7)
-
Sundqvist A., et al. Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF(Fbw7). Cell Metab. 2005, 1:379-391.
-
(2005)
Cell Metab.
, vol.1
, pp. 379-391
-
-
Sundqvist, A.1
-
68
-
-
0032532152
-
Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy
-
Shimomura I., et al. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev. 1998, 12:3182-3194.
-
(1998)
Genes Dev.
, vol.12
, pp. 3182-3194
-
-
Shimomura, I.1
-
69
-
-
0033517284
-
Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy
-
Shimomura I., et al. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 1999, 401:73-76.
-
(1999)
Nature
, vol.401
, pp. 73-76
-
-
Shimomura, I.1
-
70
-
-
0030829812
-
Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene
-
Shimano H., et al. Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene. J. Clin. Invest. 1997, 100:2115-2124.
-
(1997)
J. Clin. Invest.
, vol.100
, pp. 2115-2124
-
-
Shimano, H.1
-
71
-
-
0141704191
-
Overexpression of sterol regulatory element-binding protein-1a in mouse adipose tissue produces adipocyte hypertrophy, increased fatty acid secretion, and fatty liver
-
Horton J.D., et al. Overexpression of sterol regulatory element-binding protein-1a in mouse adipose tissue produces adipocyte hypertrophy, increased fatty acid secretion, and fatty liver. J. Biol. Chem. 2003, 278:36652-36660.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 36652-36660
-
-
Horton, J.D.1
-
72
-
-
39849083646
-
SREBPs: the crossroads of physiological and pathological lipid homeostasis
-
Raghow R., et al. SREBPs: the crossroads of physiological and pathological lipid homeostasis. Trends Endocrinol. Metab. 2008, 19:65-73.
-
(2008)
Trends Endocrinol. Metab.
, vol.19
, pp. 65-73
-
-
Raghow, R.1
-
73
-
-
0027648820
-
ADD1: a novel helix-loop-helix transcription factor associated with adipocyte determination and differentiation
-
Tontonoz P., et al. ADD1: a novel helix-loop-helix transcription factor associated with adipocyte determination and differentiation. Mol. Cell Biol. 1993, 13:4753-4759.
-
(1993)
Mol. Cell Biol.
, vol.13
, pp. 4753-4759
-
-
Tontonoz, P.1
-
74
-
-
0027490174
-
SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene
-
Yokoyama C., et al. SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell 1993, 75:187-197.
-
(1993)
Cell
, vol.75
, pp. 187-197
-
-
Yokoyama, C.1
-
75
-
-
0036251153
-
SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver
-
Horton J.D., et al. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 2002, 109:1125-1131.
-
(2002)
J. Clin. Invest.
, vol.109
, pp. 1125-1131
-
-
Horton, J.D.1
-
76
-
-
33847709027
-
SREBP in signal transduction: cholesterol metabolism and beyond
-
goechea-Alonso M.T., Ericsson J. SREBP in signal transduction: cholesterol metabolism and beyond. Curr. Opin. Cell Biol. 2007, 19:215-222.
-
(2007)
Curr. Opin. Cell Biol.
, vol.19
, pp. 215-222
-
-
goechea-Alonso, M.T.1
Ericsson, J.2
-
77
-
-
0030941803
-
The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor
-
Brown M.S., Goldstein J.L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997, 89:331-340.
-
(1997)
Cell
, vol.89
, pp. 331-340
-
-
Brown, M.S.1
Goldstein, J.L.2
-
78
-
-
72749086098
-
Evolutionary conservation and adaptation in the mechanism that regulates SREBP action: what a long, strange tRIP it's been
-
Osborne T.F., Espenshade P.J. Evolutionary conservation and adaptation in the mechanism that regulates SREBP action: what a long, strange tRIP it's been. Genes Dev. 2009, 23:2578-2591.
-
(2009)
Genes Dev.
, vol.23
, pp. 2578-2591
-
-
Osborne, T.F.1
Espenshade, P.J.2
-
79
-
-
0032793068
-
Regulation of peroxisome proliferator-activated receptor gamma expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism
-
Fajas L., et al. Regulation of peroxisome proliferator-activated receptor gamma expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism. Mol. Cell Biol. 1999, 19:5495-5503.
-
(1999)
Mol. Cell Biol.
, vol.19
, pp. 5495-5503
-
-
Fajas, L.1
-
80
-
-
0032516081
-
ADD1/SREBP1 activates PPARgamma through the production of endogenous ligand
-
Kim J.B., et al. ADD1/SREBP1 activates PPARgamma through the production of endogenous ligand. Proc. Natl. Acad. Sci. U. S. A. 1998, 95:4333-4337.
-
(1998)
Proc. Natl. Acad. Sci. U. S. A.
, vol.95
, pp. 4333-4337
-
-
Kim, J.B.1
|