-
1
-
-
1842529261
-
Identification of two novel components of the human Ndc80 kinetochore complex
-
Bharadwaj, R., W. Qi, and H. Yu. 2004. Identification of two novel components of the human Ndc80 kinetochore complex. J. Biol. Chem. 279:13076-13085.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 13076-13085
-
-
Bharadwaj, R.1
Qi, W.2
Yu, H.3
-
2
-
-
0037062424
-
A monomeric red fluorescent protein
-
Campbell, R. E., O. Tour, A. E. Palmer, P. A. Steinbach, G. S. Baird, D. A. Zacharias, and R. Y. Tsien. 2002. A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA 99:7877-7882.
-
(2002)
Proc. Natl. Acad. Sci. USA
, vol.99
, pp. 7877-7882
-
-
Campbell, R.E.1
Tour, O.2
Palmer, A.E.3
Steinbach, P.A.4
Baird, G.S.5
Zacharias, D.A.6
Tsien, R.Y.7
-
3
-
-
0030864009
-
HEC, a novel nuclear protein rich in leucine heptad repeats specifically involved in mitosis
-
Chen, Y., D. J. Riley, P. L. Chen, and W. H. Lee. 1997. HEC, a novel nuclear protein rich in leucine heptad repeats specifically involved in mitosis. Mol. Cell. Biol. 17:6049-6056.
-
(1997)
Mol. Cell. Biol.
, vol.17
, pp. 6049-6056
-
-
Chen, Y.1
Riley, D.J.2
Chen, P.L.3
Lee, W.H.4
-
4
-
-
0037459109
-
Centromeres and kinetochores: From epigenetics to mitotic checkpoint signaling
-
Cleveland, D. W., Y. Mao, and K. F. Sullivan. 2003. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112:407-421.
-
(2003)
Cell
, vol.112
, pp. 407-421
-
-
Cleveland, D.W.1
Mao, Y.2
Sullivan, K.F.3
-
5
-
-
0033080446
-
Mammalian centromeres: DNA sequence, protein composition, and role in cell cycle progression
-
Craig, J. M., W. C. Earnshaw, and P. Vagnarelli. 1999. Mammalian centromeres: DNA sequence, protein composition, and role in cell cycle progression. Exp. Cell Res. 246:249-262.
-
(1999)
Exp. Cell Res.
, vol.246
, pp. 249-262
-
-
Craig, J.M.1
Earnshaw, W.C.2
Vagnarelli, P.3
-
6
-
-
0345526410
-
Nuf2 and Hec1 are required for retention of the checkpoint proteins Mad1 and Mad2 to kinetochores
-
DeLuca, J. G., B. J. Howell, J. C. Canman, J. M. Hickey, G. Fang, and E. D. Salmon. 2003. Nuf2 and Hec1 are required for retention of the checkpoint proteins Mad1 and Mad2 to kinetochores. Curr. Biol. 13:2103-2109.
-
(2003)
Curr. Biol.
, vol.13
, pp. 2103-2109
-
-
DeLuca, J.G.1
Howell, B.J.2
Canman, J.C.3
Hickey, J.M.4
Fang, G.5
Salmon, E.D.6
-
7
-
-
2242433534
-
A kinetic framework for a mammalian RNA polymerase in vivo
-
Dundr, M., U. Hoffmann-Rohrer, Q. Hu, I. Grummt, L. I. Rothblum, R. D. Phair, and T. Misteli. 2002. A kinetic framework for a mammalian RNA polymerase in vivo. Science 298:1623-1626.
-
(2002)
Science
, vol.298
, pp. 1623-1626
-
-
Dundr, M.1
Hoffmann-Rohrer, U.2
Hu, Q.3
Grummt, I.4
Rothblum, L.I.5
Phair, R.D.6
Misteli, T.7
-
8
-
-
12144290254
-
In vivo kinetics of Cajal body components
-
Dundr, M., M. D. Hebert, T. S. Karpova, D. Stanek, H. Xu, K. B. Shpargel, U. T. Meier, K. M. Neugebauer, A. G. Matera, and T. Misteli. 2004. In vivo kinetics of Cajal body components. J. Cell Biol. 164:831-842.
-
(2004)
J. Cell Biol.
, vol.164
, pp. 831-842
-
-
Dundr, M.1
Hebert, M.D.2
Karpova, T.S.3
Stanek, D.4
Xu, H.5
Shpargel, K.B.6
Meier, U.T.7
Neugebauer, K.M.8
Matera, A.G.9
Misteli, T.10
-
9
-
-
0027251721
-
The retino blastoma protein associates with the protein phosphatase type 1 catalytic subunit
-
Durfee, T., K. Becherer, P. L. Chen, S. H. Yeh, Y. Yang, A. E. Kilburn, W. H. Lee, and S. J. Elledge. 1993. The retino blastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 7:555-569.
-
(1993)
Genes Dev.
, vol.7
, pp. 555-569
-
-
Durfee, T.1
Becherer, K.2
Chen, P.L.3
Yeh, S.H.4
Yang, Y.5
Kilburn, A.E.6
Lee, W.H.7
Elledge, S.J.8
-
10
-
-
0030777507
-
Efficient conditional mutation of the vertebrate CENP-C gene
-
Fukagawa, T., and W. R. A. Brown. 1997. Efficient conditional mutation of the vertebrate CENP-C gene. Hum. Mol. Genet. 6:2301-2308.
-
(1997)
Hum. Mol. Genet.
, vol.6
, pp. 2301-2308
-
-
Fukagawa, T.1
Brown, W.R.A.2
-
11
-
-
0033517101
-
CENP-C is necessary but not sufficient to induce formation of functional centromere
-
Fukagawa, T., C. Pendon, J. Morris, and W. Brown. 1999. CENP-C is necessary but not sufficient to induce formation of functional centromere. EMBO J. 18:4196-4209.
-
(1999)
EMBO J.
, vol.18
, pp. 4196-4209
-
-
Fukagawa, T.1
Pendon, C.2
Morris, J.3
Brown, W.4
-
12
-
-
17944382377
-
CENP-H, a constitutive centromere component, is required for centromere targeting of CENP-C in vertebrate cells
-
Fukagawa, T., Y. Mikami, A. Nishihashi, V. Regnier, T. Haraguchi, Y. Hiraoka, N. Sugata, K. Todokoro, W. Brown, and T. Ikemura. 2001. CENP-H, a constitutive centromere component, is required for centromere targeting of CENP-C in vertebrate cells. EMBO J. 20:4603-4617.
-
(2001)
EMBO J.
, vol.20
, pp. 4603-4617
-
-
Fukagawa, T.1
Mikami, Y.2
Nishihashi, A.3
Regnier, V.4
Haraguchi, T.5
Hiraoka, Y.6
Sugata, N.7
Todokoro, K.8
Brown, W.9
Ikemura, T.10
-
13
-
-
2142809838
-
Assembly of kinetochore in vertebrate cells
-
Fukagawa, T. 2004. Assembly of kinetochore in vertebrate cells. Exp. Cell Res. 296:21-27.
-
(2004)
Exp. Cell Res.
, vol.296
, pp. 21-27
-
-
Fukagawa, T.1
-
14
-
-
0042887146
-
Dynamic behavior of Nuf2-Hec1 complex that localizes to the centrosome and centromere and is essential for mitotic progression in vertebrate cells
-
Hori, T., T. Haraguchi, Y. Hiraoka, H. Kimura, and T. Fukagawa. 2003. Dynamic behavior of Nuf2-Hec1 complex that localizes to the centrosome and centromere and is essential for mitotic progression in vertebrate cells. J. Cell Sci. 116:3347-3362.
-
(2003)
J. Cell Sci.
, vol.116
, pp. 3347-3362
-
-
Hori, T.1
Haraguchi, T.2
Hiraoka, Y.3
Kimura, H.4
Fukagawa, T.5
-
15
-
-
0034683744
-
Visualization of Mad2 dynamics at kinetochores, along spindle fibers, and at spindle poles in living cells
-
Howell, B. J., D. B. Hoffman, G. Fang, A. W. Murray, and E. D. Salmon. 2000. Visualization of Mad2 dynamics at kinetochores, along spindle fibers, and at spindle poles in living cells. J. Cell Biol. 150:1233-1250.
-
(2000)
J. Cell Biol.
, vol.150
, pp. 1233-1250
-
-
Howell, B.J.1
Hoffman, D.B.2
Fang, G.3
Murray, A.W.4
Salmon, E.D.5
-
16
-
-
2642546649
-
Spindle checkpoint protein dynamics at kinetochores in living cells
-
Howell, B. J., B. Moree, E. M. Farrar, S. Stewart, G. Fang, and E. D. Salmon. 2004. Spindle checkpoint protein dynamics at kinetochores in living cells. Curr. Biol. 14:953-964.
-
(2004)
Curr. Biol.
, vol.14
, pp. 953-964
-
-
Howell, B.J.1
Moree, B.2
Farrar, E.M.3
Stewart, S.4
Fang, G.5
Salmon, E.D.6
-
17
-
-
0032415592
-
The hBUB1 and BUBR1 kinases sequentially assemble onto kinetochores during prophase with hBUBR1 concentrating at the kinetochore plates in mitosis
-
Jablonski, S. A., G. K. T. Chan, C. A. Cooke, W. C. Earnshaw, and T. J. Yen. 1998. The hBUB1 and BUBR1 kinases sequentially assemble onto kinetochores during prophase with hBUBR1 concentrating at the kinetochore plates in mitosis. Chromosoma 107:386-396.
-
(1998)
Chromosoma
, vol.107
, pp. 386-396
-
-
Jablonski, S.A.1
Chan, G.K.T.2
Cooke, C.A.3
Earnshaw, W.C.4
Yen, T.J.5
-
18
-
-
0035865139
-
The budding yeast proteins Spc24p and Spc25p interact with Ndc80p and Nuf2p at the kinetochore and are important for kinetochore clustering and checkpoint control
-
Janke, C., J. Ortiz, J. Lechner, A. Shevchenko, A. Shevchenko, M. M. Magiera, C. Schramm, and E. Schiebel. 2001. The budding yeast proteins Spc24p and Spc25p interact with Ndc80p and Nuf2p at the kinetochore and are important for kinetochore clustering and checkpoint control. EMBO J. 20:777-791.
-
(2001)
EMBO J.
, vol.20
, pp. 777-791
-
-
Janke, C.1
Ortiz, J.2
Lechner, J.3
Shevchenko, A.4
Shevchenko, A.5
Magiera, M.M.6
Schramm, C.7
Schiebel, E.8
-
19
-
-
0032477814
-
Targeted disruption of mouse centromere protein C gene leads to mitotic disarray and early embryo death
-
Kalitsis, P., K. J. Fowler, E. Earle, J. Hill, and K. H. A. Choo. 1998. Targeted disruption of mouse centromere protein C gene leads to mitotic disarray and early embryo death. Proc. Natl. Acad. Sci. USA 95:576-582.
-
(1998)
Proc. Natl. Acad. Sci. USA
, vol.95
, pp. 576-582
-
-
Kalitsis, P.1
Fowler, K.J.2
Earle, E.3
Hill, J.4
Choo, K.H.A.5
-
20
-
-
0032568321
-
Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells
-
Kanda, T., K. F. Sullivan, and G. M. Wahl. 1998. Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr. Biol. 8:377-385.
-
(1998)
Curr. Biol.
, vol.8
, pp. 377-385
-
-
Kanda, T.1
Sullivan, K.F.2
Wahl, G.M.3
-
21
-
-
0032922002
-
PhosphoBase, a database of phosphorylation sites: Release 2.0
-
Kreegipuu, A., N. Blom, and S. Brunak. 1999. PhosphoBase, a database of phosphorylation sites: release 2.0. Nucleic Acids Res. 27:237-239.
-
(1999)
Nucleic Acids Res.
, vol.27
, pp. 237-239
-
-
Kreegipuu, A.1
Blom, N.2
Brunak, S.3
-
22
-
-
0032542364
-
Genetic instabilities in human cancers
-
Lengauer, C., K. W. Kinzler, and B. Vogelstein. 1998. Genetic instabilities in human cancers. Nature 396:643-649.
-
(1998)
Nature
, vol.396
, pp. 643-649
-
-
Lengauer, C.1
Kinzler, K.W.2
Vogelstein, B.3
-
23
-
-
0037385783
-
Human CENP-I specifies localization of CENP-F, MAD1 and MAD2 to kinetochores and is essential for mitosis
-
Liu, S. T., J. C. Hittle, S. A. Jablonski, M. S. Campbell, K. Yoda, and T. J. Yen. 2003. Human CENP-I specifies localization of CENP-F, MAD1 and MAD2 to kinetochores and is essential for mitosis. Nat. Cell Biol. 5:341-345.
-
(2003)
Nat. Cell Biol.
, vol.5
, pp. 341-345
-
-
Liu, S.T.1
Hittle, J.C.2
Jablonski, S.A.3
Campbell, M.S.4
Yoda, K.5
Yen, T.J.6
-
24
-
-
0037183886
-
Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2
-
Martin-Lluesma, S., V. M. Stucke, and E. A. Nigg. 2002. Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2. Science 297:2267-2270.
-
(2002)
Science
, vol.297
, pp. 2267-2270
-
-
Martin-Lluesma, S.1
Stucke, V.M.2
Nigg, E.A.3
-
25
-
-
1142265855
-
The vertebrate Ndc80 complex contains Spc24 and Spc25 homologs, which are required to establish and maintain kinetochore-microtubule attachment
-
McCleland, M. L., M. J. Kallio, G. A. Barrett-Wilt, C. A. Kestner, J. Shabanowitz, D. F. Hunt, G. J. Gorbsky, and P. T. Stukenberg. 2004. The vertebrate Ndc80 complex contains Spc24 and Spc25 homologs, which are required to establish and maintain kinetochore-microtubule attachment. Curr. Biol. 14:131-137.
-
(2004)
Curr. Biol.
, vol.14
, pp. 131-137
-
-
McCleland, M.L.1
Kallio, M.J.2
Barrett-Wilt, G.A.3
Kestner, C.A.4
Shabanowitz, J.5
Hunt, D.F.6
Gorbsky, G.J.7
Stukenberg, P.T.8
-
26
-
-
0037380151
-
Stretching it: Putting the CEN(P-A) in centromere
-
Mellone, B. G., and R. C. Allshire. 2003. Stretching it: putting the CEN(P-A) in centromere. Curr. Opin. Cell Biol. 13:191-198.
-
(2003)
Curr. Opin. Cell Biol.
, vol.13
, pp. 191-198
-
-
Mellone, B.G.1
Allshire, R.C.2
-
27
-
-
0034810261
-
A conserved protein, Nuf2, is implicated in connecting the centromere to the spindle during chromosome segregation: A link between the kinetochore function and the spindle checkpoint
-
Nabetani, A., T. Koujin, C. Tsutsumi, T. Haraguchi, and Y. Hiraoka. 2001. A conserved protein, Nuf2, is implicated in connecting the centromere to the spindle during chromosome segregation: a link between the kinetochore function and the spindle checkpoint. Chromosoma 110:322-334.
-
(2001)
Chromosoma
, vol.110
, pp. 322-334
-
-
Nabetani, A.1
Koujin, T.2
Tsutsumi, C.3
Haraguchi, T.4
Hiraoka, Y.5
-
28
-
-
0036230785
-
CENP-I is essential for centromere function in vertebrate cells
-
Nishihashi, A., T. Haraguchi, Y. Hiraoka, T. Ikemura, V. Regnier, H. Dodson, W. C. Earnshaw, and T. Fukagawa. 2002. CENP-I is essential for centromere function in vertebrate cells. Dev. Cell 2:463-476.
-
(2002)
Dev. Cell
, vol.2
, pp. 463-476
-
-
Nishihashi, A.1
Haraguchi, T.2
Hiraoka, Y.3
Ikemura, T.4
Regnier, V.5
Dodson, H.6
Earnshaw, W.C.7
Fukagawa, T.8
-
29
-
-
0023275058
-
A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones
-
Palmer, D. K., and R. L. Margolis. 1987. A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J. Cell Biol. 104:805-815.
-
(1987)
J. Cell Biol.
, vol.104
, pp. 805-815
-
-
Palmer, D.K.1
Margolis, R.L.2
-
30
-
-
0029586756
-
The centromere: Hub of chromosomal activities
-
Pluta, A. F., A. M. Mackay, A. M. Ainsztein, I. G. Goldberg, and W. C. Earnshaw. 1995. The centromere: hub of chromosomal activities. Science 270:1591-1594.
-
(1995)
Science
, vol.270
, pp. 1591-1594
-
-
Pluta, A.F.1
Mackay, A.M.2
Ainsztein, A.M.3
Goldberg, I.G.4
Earnshaw, W.C.5
-
31
-
-
0026650005
-
CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate
-
Saitoh, H., J. Tomkiel, C. A. Cooke, H. Ratrie, M. Maure, N. F. Rothfield, and W. C. Earnshaw. 1992. CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell 70:115-125.
-
(1992)
Cell
, vol.70
, pp. 115-125
-
-
Saitoh, H.1
Tomkiel, J.2
Cooke, C.A.3
Ratrie, H.4
Maure, M.5
Rothfield, N.F.6
Earnshaw, W.C.7
-
32
-
-
2642549143
-
Dynamics of centromere and kinetochore proteins: Implications for checkpoint signaling and silencing
-
Shah, J. V., E. Botvinick, Z. Bonday, F. Furnari, M. Berns, and D. W. Cleveland. 2004. Dynamics of centromere and kinetochore proteins: implications for checkpoint signaling and silencing. Curr. Biol. 14:942-952.
-
(2004)
Curr. Biol.
, vol.14
, pp. 942-952
-
-
Shah, J.V.1
Botvinick, E.2
Bonday, Z.3
Furnari, F.4
Berns, M.5
Cleveland, D.W.6
-
33
-
-
0031049028
-
Assembly of CENP-A into centromere chromatin requires a cooperative array of nucleosomal DNA contact sites
-
Shelby, R. D., O. Vafa, and K. F. Sullivan. 1997. Assembly of CENP-A into centromere chromatin requires a cooperative array of nucleosomal DNA contact sites. J. Cell Biol. 136:501-513.
-
(1997)
J. Cell Biol.
, vol.136
, pp. 501-513
-
-
Shelby, R.D.1
Vafa, O.2
Sullivan, K.F.3
-
34
-
-
0033600872
-
Characterization of a novel kinetochore protein, CENP-H
-
Sugata, N., E. Munekata, and K. Todokoro. 1999. Characterization of a novel kinetochore protein, CENP-H. J. Biol. Chem. 274:27343-27346.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 27343-27346
-
-
Sugata, N.1
Munekata, E.2
Todokoro, K.3
-
35
-
-
0034703864
-
Human CENP-H multimers colocalize with CENP-A and CENP-C at active centromere-kinetochore complexes
-
Sugata, N., S. Li, W. C. Earnshaw, T. J. Yen, K. Yoda, H. Masumoto, E. Munekata, P. E. Warburton, and K. Todokoro. 2000. Human CENP-H multimers colocalize with CENP-A and CENP-C at active centromere-kinetochore complexes. Hum. Mol. Genet. 9:2919-2926.
-
(2000)
Hum. Mol. Genet.
, vol.9
, pp. 2919-2926
-
-
Sugata, N.1
Li, S.2
Earnshaw, W.C.3
Yen, T.J.4
Yoda, K.5
Masumoto, H.6
Munekata, E.7
Warburton, P.E.8
Todokoro, K.9
-
36
-
-
0028789523
-
Identification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres
-
Sullivan, B. A., and S. Schwartz. 1995. Identification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. Hum. Mol. Genet. 4:2189-2197.
-
(1995)
Hum. Mol. Genet.
, vol.4
, pp. 2189-2197
-
-
Sullivan, B.A.1
Schwartz, S.2
-
37
-
-
0028287114
-
CENP-C is required for maintaining proper kinetochore size and for a timely transition to anaphase
-
Tomkiel, J., C. A. Cooke, H. Saitoh, R. L. Bernat, and W. C. Earnshaw. 1994. CENP-C is required for maintaining proper kinetochore size and for a timely transition to anaphase. J. Cell Biol. 125:531-545.
-
(1994)
J. Cell Biol.
, vol.125
, pp. 531-545
-
-
Tomkiel, J.1
Cooke, C.A.2
Saitoh, H.3
Bernat, R.L.4
Earnshaw, W.C.5
-
38
-
-
12644270188
-
Immunolocalization of CENP-A suggests a novel nucleosome structure at the inner kinetochore plate of active centromeres
-
Warburton, P. E., C. A. Cooke, S. Bourassa, O. Vafa, B. A. Sullivan, G. Stetten, G. Gimelli, D. Warburton, C. Tyler-Smith, K. F. Sullivan, G. G. Poirier, and W. C. Earnshaw. 1997. Immunolocalization of CENP-A suggests a novel nucleosome structure at the inner kinetochore plate of active centromeres. Curr. Biol. 7:901-904.
-
(1997)
Curr. Biol.
, vol.7
, pp. 901-904
-
-
Warburton, P.E.1
Cooke, C.A.2
Bourassa, S.3
Vafa, O.4
Sullivan, B.A.5
Stetten, G.6
Gimelli, G.7
Warburton, D.8
Tyler-Smith, C.9
Sullivan, K.F.10
Poirier, G.G.11
Earnshaw, W.C.12
-
39
-
-
0242266928
-
Architecture of the budding yeast kinetochore reveals a conserved molecular core
-
Westermann, S., I. M. Cheeseman, S. Anderson, J. R. Yates III, D. G. Drubin, and G. Barnes. 2003. Architecture of the budding yeast kinetochore reveals a conserved molecular core. J. Cell Biol. 163:215-222.
-
(2003)
J. Cell Biol.
, vol.163
, pp. 215-222
-
-
Westermann, S.1
Cheeseman, I.M.2
Anderson, S.3
Yates III, J.R.4
Drubin, D.G.5
Barnes, G.6
-
40
-
-
0035931755
-
The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation
-
Wigge, P. A., and J. V. Kilmartin. 2001. The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J. Cell Biol. 152:349-360.
-
(2001)
J. Cell Biol.
, vol.152
, pp. 349-360
-
-
Wigge, P.A.1
Kilmartin, J.V.2
-
41
-
-
0028887847
-
Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis
-
Wordeman, L., and T. J. Mitchison. 1995. Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J. Cell Biol. 128:95-104.
-
(1995)
J. Cell Biol.
, vol.128
, pp. 95-104
-
-
Wordeman, L.1
Mitchison, T.J.2
|