메뉴 건너뛰기




Volumn 28, Issue 5, 2010, Pages 262-271

Biological hydrogen production: Prospects and challenges

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL HYDROGEN PRODUCTION; CARBON NEUTRALS; ELECTROLYSIS CELL; EMERGING TECHNOLOGIES; ENERGY CARRIERS; HIGH CONVERSION EFFICIENCY; HIGH PRODUCTION RATE; HYDROGEN GAS; INDUSTRIAL FEEDSTOCK; INEXHAUSTIBLE RESOURCES; ORGANIC SUBSTRATE; OXYGEN SENSITIVITY; RENEWABLE SOURCES; TECHNICAL CHALLENGES;

EID: 77951976891     PISSN: 01677799     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibtech.2010.01.007     Document Type: Review
Times cited : (352)

References (93)
  • 1
    • 2342470161 scopus 로고    scopus 로고
    • Extracting hydrogen and electricity from renewable resources
    • Logan B.E. Extracting hydrogen and electricity from renewable resources. Environ. Sci. Technol. 2004, 38:160A-167A.
    • (2004) Environ. Sci. Technol. , vol.38
    • Logan, B.E.1
  • 2
    • 77951978691 scopus 로고    scopus 로고
    • The impact of increased use of hydrogen on petroleum consumption and carbon dioxide emissions
    • Energy of Information Administration, Report #: SR-OIAF-CNEAF/2008-04
    • EIA (2008) The impact of increased use of hydrogen on petroleum consumption and carbon dioxide emissions. Energy of Information Administration, Report #: SR-OIAF-CNEAF/2008-04.
    • (2008) EIA
  • 3
    • 51349122130 scopus 로고    scopus 로고
    • The membrane biofilm reactor is a versatile platform for water and wastewater treatment
    • Rittmann B.E. The membrane biofilm reactor is a versatile platform for water and wastewater treatment. Environ. Eng. Res. 2007, 12:157-175.
    • (2007) Environ. Eng. Res. , vol.12 , pp. 157-175
    • Rittmann, B.E.1
  • 4
    • 77951978621 scopus 로고    scopus 로고
    • Hydrogen posture plan: an integrated research, development, and demonstration plan
    • United States Department of Energy and Department of Transportation
    • U.S. DOE and DOT (2006) Hydrogen posture plan: an integrated research, development, and demonstration plan. United States Department of Energy and Department of Transportation.
    • (2006) U.S. DOE and DOT
  • 5
    • 67649757166 scopus 로고    scopus 로고
    • Engineering algae for biohydrogen and biofuel production
    • Beer L.L., et al. Engineering algae for biohydrogen and biofuel production. Curr. Opin. Biotechnol. 2009, 20:264-271.
    • (2009) Curr. Opin. Biotechnol. , vol.20 , pp. 264-271
    • Beer, L.L.1
  • 6
    • 57649188186 scopus 로고    scopus 로고
    • Photobiological hydrogen-producing systems
    • Ghirardi M.L., et al. Photobiological hydrogen-producing systems. Chem. Soc. Rev. 2009, 38:52-61.
    • (2009) Chem. Soc. Rev. , vol.38 , pp. 52-61
    • Ghirardi, M.L.1
  • 7
    • 34250902424 scopus 로고    scopus 로고
    • Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms
    • Ghirardi M.L., et al. Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annu. Rev. Plant Biol. 2007, 58:71-91.
    • (2007) Annu. Rev. Plant Biol. , vol.58 , pp. 71-91
    • Ghirardi, M.L.1
  • 8
    • 16344373934 scopus 로고    scopus 로고
    • The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel
    • Prince R.C., Kheshgi H.S. The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. Crit. Rev. Microbiol. 2005, 31:19-31.
    • (2005) Crit. Rev. Microbiol. , vol.31 , pp. 19-31
    • Prince, R.C.1    Kheshgi, H.S.2
  • 9
    • 33751534724 scopus 로고    scopus 로고
    • Genetic control of hydrogen metabolism in cyanobacteria
    • Shestakov S.V., Mikheeva L.E. Genetic control of hydrogen metabolism in cyanobacteria. Russ. J. Genet. 2006, 42:1272-1284.
    • (2006) Russ. J. Genet. , vol.42 , pp. 1272-1284
    • Shestakov, S.V.1    Mikheeva, L.E.2
  • 10
    • 35448935699 scopus 로고    scopus 로고
    • Cyanobacterial hydrogenases: diversity, regulation and applications
    • Tamagnini P., et al. Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol. Rev. 2007, 31:692-720.
    • (2007) FEMS Microbiol. Rev. , vol.31 , pp. 692-720
    • Tamagnini, P.1
  • 11
    • 59549104858 scopus 로고    scopus 로고
    • Hydrogen photoproduction by use of photosynthetic organisms and biomimetic systems
    • Allakhverdiev S.I., et al. Hydrogen photoproduction by use of photosynthetic organisms and biomimetic systems. Photochem. Photobiol. Sci. 2009, 8:148-156.
    • (2009) Photochem. Photobiol. Sci. , vol.8 , pp. 148-156
    • Allakhverdiev, S.I.1
  • 12
    • 70350469059 scopus 로고    scopus 로고
    • How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms
    • Stripp S.T., et al. How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:17331-17336.
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 17331-17336
    • Stripp, S.T.1
  • 13
    • 14644439164 scopus 로고    scopus 로고
    • 2-photoproducing organisms and processes
    • 2-photoproducing organisms and processes. Biochem. Soc. Trans. 2005, 33:70-72.
    • (2005) Biochem. Soc. Trans. , vol.33 , pp. 70-72
    • Ghirardi, M.L.1
  • 14
    • 33744503148 scopus 로고    scopus 로고
    • [NiFe]-hydrogenases of Ralstonia eutropha H16: modular enzymes for oxygen-tolerant biological hydrogen oxidation
    • Burgdorf T. [NiFe]-hydrogenases of Ralstonia eutropha H16: modular enzymes for oxygen-tolerant biological hydrogen oxidation. J. Mol. Microbiol. Biotechnol. 2005, 10:181-196.
    • (2005) J. Mol. Microbiol. Biotechnol. , vol.10 , pp. 181-196
    • Burgdorf, T.1
  • 15
    • 69049091873 scopus 로고    scopus 로고
    • Purification and characterization of the oxygen-thermostable hydrogenase from the aerobic hyperthermophilic archaeon Aeropyrum camini
    • Nishimura H., Sako Y. Purification and characterization of the oxygen-thermostable hydrogenase from the aerobic hyperthermophilic archaeon Aeropyrum camini. J. Biosci. Bioeng. 2009, 108:299-303.
    • (2009) J. Biosci. Bioeng. , vol.108 , pp. 299-303
    • Nishimura, H.1    Sako, Y.2
  • 16
    • 35748974830 scopus 로고    scopus 로고
    • Occurrence, classification, and biological function of hydrogenases: an overview
    • Vignais P.M., Billoud B. Occurrence, classification, and biological function of hydrogenases: an overview. Chem. Rev. 2007, 107:4206-4272.
    • (2007) Chem. Rev. , vol.107 , pp. 4206-4272
    • Vignais, P.M.1    Billoud, B.2
  • 17
    • 76149104243 scopus 로고    scopus 로고
    • Dynamic electrochemical experiments on hydrogenases
    • Armstrong F.A. Dynamic electrochemical experiments on hydrogenases. Photosynth. Res. 2009, 102:541-550.
    • (2009) Photosynth. Res. , vol.102 , pp. 541-550
    • Armstrong, F.A.1
  • 18
    • 67651211347 scopus 로고    scopus 로고
    • Introduction of methionines in the gas channel makes [NiFe] hydrogenase aero-tolerant
    • Dementin S., et al. Introduction of methionines in the gas channel makes [NiFe] hydrogenase aero-tolerant. J. Am. Chem. Soc. 2009, 131:10156-10164.
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 10156-10164
    • Dementin, S.1
  • 19
    • 67650273077 scopus 로고    scopus 로고
    • Spectroscopic insights into the oxygen-tolerant membrane-associated [NiFe] hydrogenase of Ralstonia eutropha H16
    • Saggu M., et al. Spectroscopic insights into the oxygen-tolerant membrane-associated [NiFe] hydrogenase of Ralstonia eutropha H16. J. Biol. Chem. 2009, 284:16264-16276.
    • (2009) J. Biol. Chem. , vol.284 , pp. 16264-16276
    • Saggu, M.1
  • 21
    • 1542286924 scopus 로고    scopus 로고
    • Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. strain PCC 6803 deficient in the type I NADPH dehydrogenase complex
    • Cournac L., et al. Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. strain PCC 6803 deficient in the type I NADPH dehydrogenase complex. J. Bacteriol. 2004, 186:1737-1746.
    • (2004) J. Bacteriol. , vol.186 , pp. 1737-1746
    • Cournac, L.1
  • 22
    • 33745844815 scopus 로고    scopus 로고
    • Light-driven hydrogen production by a hybrid complex of a [NiFe]-hydrogenase and the cyanobacterial photosystem I
    • Ihara M., et al. Light-driven hydrogen production by a hybrid complex of a [NiFe]-hydrogenase and the cyanobacterial photosystem I. Photochem. Photobiol. 2006, 82:676-682.
    • (2006) Photochem. Photobiol. , vol.82 , pp. 676-682
    • Ihara, M.1
  • 23
    • 33846469977 scopus 로고    scopus 로고
    • 3 to [NiFe]-hydrogenase
    • 3 to [NiFe]-hydrogenase. Photochem. Photobiol. 2006, 82:1677-1685.
    • (2006) Photochem. Photobiol. , vol.82 , pp. 1677-1685
    • Ihara, M.1
  • 25
    • 0017343370 scopus 로고
    • Energy conservation in chemotrophic anaerobic bacteria
    • Thauer R.K., et al. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 1977, 41:100-180.
    • (1977) Bacteriol. Rev. , vol.41 , pp. 100-180
    • Thauer, R.K.1
  • 27
    • 70350489219 scopus 로고    scopus 로고
    • 2: microbial ecology evidence
    • 2: microbial ecology evidence. Biotechnol. Bioeng. 2009, 104:687-697.
    • (2009) Biotechnol. Bioeng. , vol.104 , pp. 687-697
    • Lee, H.S.1
  • 28
    • 0025043949 scopus 로고
    • Escherichia coli formate-hydrogen lyase
    • Axley M.J., et al. Escherichia coli formate-hydrogen lyase. J. Biol. Chem. 1990, 265:18213-18218.
    • (1990) J. Biol. Chem. , vol.265 , pp. 18213-18218
    • Axley, M.J.1
  • 29
    • 33750328012 scopus 로고    scopus 로고
    • Enhanced hydrogen production from glucose using ldh- and frd-inactivated Escherichia coli strains
    • Yoshida A., et al. Enhanced hydrogen production from glucose using ldh- and frd-inactivated Escherichia coli strains. Appl. Microbiol. Biotechnol. 2006, 73:67-72.
    • (2006) Appl. Microbiol. Biotechnol. , vol.73 , pp. 67-72
    • Yoshida, A.1
  • 30
    • 34247850939 scopus 로고    scopus 로고
    • Microbial community structure of ethanol type fermentation in bio-hydrogen production
    • Ren N.Q., et al. Microbial community structure of ethanol type fermentation in bio-hydrogen production. Environ. Microbiol. 2007, 9:1112-1125.
    • (2007) Environ. Microbiol. , vol.9 , pp. 1112-1125
    • Ren, N.Q.1
  • 31
    • 0015788525 scopus 로고
    • Function of reduced pyridine nucleotide-ferredoxin oxidoreductases in sacchrolytic Clostridia
    • Jungermann K., et al. Function of reduced pyridine nucleotide-ferredoxin oxidoreductases in sacchrolytic Clostridia. Biochim. Biophys. Acta 1973, 305:268-280.
    • (1973) Biochim. Biophys. Acta , vol.305 , pp. 268-280
    • Jungermann, K.1
  • 32
    • 0017295687 scopus 로고
    • Regulation of NADH and NADPH-ferredoxin oxidoreductases in clostridia of butyric group
    • Petitdemange H., et al. Regulation of NADH and NADPH-ferredoxin oxidoreductases in clostridia of butyric group. Biochim. Biophys. Acta 1976, 421:334-347.
    • (1976) Biochim. Biophys. Acta , vol.421 , pp. 334-347
    • Petitdemange, H.1
  • 33
    • 33846237251 scopus 로고    scopus 로고
    • Fermentative hydrogen production by the newly isolated Enterobacter asuriae SNU-1
    • Shin J.H., et al. Fermentative hydrogen production by the newly isolated Enterobacter asuriae SNU-1. Int. J. Hydrogen Energy 2007, 32:192-199.
    • (2007) Int. J. Hydrogen Energy , vol.32 , pp. 192-199
    • Shin, J.H.1
  • 34
    • 33750885810 scopus 로고    scopus 로고
    • Fermentative hydrogen production from wastewater and solid wastes by mixed cultures
    • Li C.L., Fang H.H.P. Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit. Rev. Environ. Sci. Technol. 2007, 37:1-39.
    • (2007) Crit. Rev. Environ. Sci. Technol. , vol.37 , pp. 1-39
    • Li, C.L.1    Fang, H.H.P.2
  • 35
    • 0036172432 scopus 로고    scopus 로고
    • Microbial diversity of a mesophilic hydrogen-producing sludge
    • Fang H.H.P., et al. Microbial diversity of a mesophilic hydrogen-producing sludge. Appl. Microbiol. Biotechnol. 2002, 58:112-118.
    • (2002) Appl. Microbiol. Biotechnol. , vol.58 , pp. 112-118
    • Fang, H.H.P.1
  • 36
    • 33749515929 scopus 로고    scopus 로고
    • Characterization of Fe-hydrogenase genes diversity and hydrogen-producing population in an acidophilic sludge
    • Fang H.H.P., et al. Characterization of Fe-hydrogenase genes diversity and hydrogen-producing population in an acidophilic sludge. J. Biotechnol. 2006, 126:357-364.
    • (2006) J. Biotechnol. , vol.126 , pp. 357-364
    • Fang, H.H.P.1
  • 37
    • 33645701619 scopus 로고    scopus 로고
    • Molecular detection of the clostridia in an anaerobic biohydrogen fermentation system by hydrogenase mRNA-targeted reverse transcription-PCR
    • Chang J.J., et al. Molecular detection of the clostridia in an anaerobic biohydrogen fermentation system by hydrogenase mRNA-targeted reverse transcription-PCR. Appl. Microbiol. Biotechnol. 2006, 70:598-604.
    • (2006) Appl. Microbiol. Biotechnol. , vol.70 , pp. 598-604
    • Chang, J.J.1
  • 38
    • 33646168279 scopus 로고    scopus 로고
    • Ethanoligenens harbinense gen. nov., sp. nov., isolated from molasses wastewater
    • Xing D., et al. Ethanoligenens harbinense gen. nov., sp. nov., isolated from molasses wastewater. Int. J. Syst. Evol. Microbiol. 2006, 56:755-760.
    • (2006) Int. J. Syst. Evol. Microbiol. , vol.56 , pp. 755-760
    • Xing, D.1
  • 39
    • 41649109093 scopus 로고    scopus 로고
    • Thermodynamic evaluation of hydrogen production in glucose fermentation
    • Lee H.S., et al. Thermodynamic evaluation of hydrogen production in glucose fermentation. Environ. Sci. Technol. 2008, 42:2401-2407.
    • (2008) Environ. Sci. Technol. , vol.42 , pp. 2401-2407
    • Lee, H.S.1
  • 40
    • 60349090703 scopus 로고    scopus 로고
    • Evaluation of metabolism using stoichiometry in fermentative biohydrogen
    • Lee H.S., Rittmann B.E. Evaluation of metabolism using stoichiometry in fermentative biohydrogen. Biotechnol. Bioeng. 2009, 102:749-758.
    • (2009) Biotechnol. Bioeng. , vol.102 , pp. 749-758
    • Lee, H.S.1    Rittmann, B.E.2
  • 41
    • 0344896607 scopus 로고    scopus 로고
    • Biohydrogen production: prospects and limitations to practical application
    • Levin D.B., et al. Biohydrogen production: prospects and limitations to practical application. Int. J. Hydrogen Energy 2004, 29:173-185.
    • (2004) Int. J. Hydrogen Energy , vol.29 , pp. 173-185
    • Levin, D.B.1
  • 42
    • 58549087922 scopus 로고    scopus 로고
    • High rate membrane-less microbial electrolysis cell for continuous hydrogen production
    • Tartakovsky B., et al. High rate membrane-less microbial electrolysis cell for continuous hydrogen production. Int. J. Hydrogen Energy 2009, 34:672-677.
    • (2009) Int. J. Hydrogen Energy , vol.34 , pp. 672-677
    • Tartakovsky, B.1
  • 43
    • 66949157296 scopus 로고    scopus 로고
    • Bioreactors configured with distributors and carriers enhance the performance of continuous dark hydrogen fermentation
    • Lo Y.C., et al. Bioreactors configured with distributors and carriers enhance the performance of continuous dark hydrogen fermentation. Bioresour. Technol. 2009, 100:4381-4387.
    • (2009) Bioresour. Technol. , vol.100 , pp. 4381-4387
    • Lo, Y.C.1
  • 44
    • 64549127249 scopus 로고    scopus 로고
    • High surface area stainless steel brushes as cathodes in microbial electrolysis cells
    • Call D.F., et al. High surface area stainless steel brushes as cathodes in microbial electrolysis cells. Environ. Sci. Technol. 2009, 43:2179-2183.
    • (2009) Environ. Sci. Technol. , vol.43 , pp. 2179-2183
    • Call, D.F.1
  • 45
    • 47049085042 scopus 로고    scopus 로고
    • Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane
    • Call D.F., Logan B.E. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ. Sci. Technol. 2008, 42:3401-3406.
    • (2008) Environ. Sci. Technol. , vol.42 , pp. 3401-3406
    • Call, D.F.1    Logan, B.E.2
  • 46
    • 67650713527 scopus 로고    scopus 로고
    • Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis
    • Lalaurette E., et al. Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis. Int. J. Hydrogen Energy 2009, 34:6201-6210.
    • (2009) Int. J. Hydrogen Energy , vol.34 , pp. 6201-6210
    • Lalaurette, E.1
  • 47
    • 67349179146 scopus 로고    scopus 로고
    • 2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell
    • 2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell. Biosens. Bioelectron. 2009, 24:3055-3060.
    • (2009) Biosens. Bioelectron. , vol.24 , pp. 3055-3060
    • Lu, L.1
  • 48
    • 33847232283 scopus 로고    scopus 로고
    • Operation of a two-stage fermentation process producing hydrogen and methane from organic waste
    • Ueno Y., et al. Operation of a two-stage fermentation process producing hydrogen and methane from organic waste. Environ. Sci. Technol. 2007, 41:1413-1419.
    • (2007) Environ. Sci. Technol. , vol.41 , pp. 1413-1419
    • Ueno, Y.1
  • 49
    • 65549168727 scopus 로고    scopus 로고
    • Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches
    • Venetsaneas N., et al. Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches. Bioresour. Technol. 2009, 100:3713-3717.
    • (2009) Bioresour. Technol. , vol.100 , pp. 3713-3717
    • Venetsaneas, N.1
  • 51
    • 0021368026 scopus 로고
    • Elucidation of growth inhibition and acetic acid production by Clostridium thermoaceticum
    • Wang G., Wang D.I.C. Elucidation of growth inhibition and acetic acid production by Clostridium thermoaceticum. Appl. Environ. Microbiol. 1984, 47:294-298.
    • (1984) Appl. Environ. Microbiol. , vol.47 , pp. 294-298
    • Wang, G.1    Wang, D.I.C.2
  • 52
    • 0001086975 scopus 로고
    • Methanogenic bacteria, including an acid-tolerant strain, from peatlands
    • Williams R.T., Crawford R.L. Methanogenic bacteria, including an acid-tolerant strain, from peatlands. Appl. Environ. Microbiol. 1985, 50:1542-1544.
    • (1985) Appl. Environ. Microbiol. , vol.50 , pp. 1542-1544
    • Williams, R.T.1    Crawford, R.L.2
  • 53
    • 0030032633 scopus 로고    scopus 로고
    • Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis
    • Hales B.A., et al. Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Appl. Environ. Microbiol. 1996, 62:668-675.
    • (1996) Appl. Environ. Microbiol. , vol.62 , pp. 668-675
    • Hales, B.A.1
  • 54
    • 0037224849 scopus 로고    scopus 로고
    • Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat
    • Horn M.A., et al. Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat. Appl. Environ. Microbiol. 2003, 69:74-83.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 74-83
    • Horn, M.A.1
  • 55
    • 51349106585 scopus 로고    scopus 로고
    • Carbon metabolism of the moderately acid-tolerant acetogen Clostridium drakei isolated from peat
    • Gößner A.S., et al. Carbon metabolism of the moderately acid-tolerant acetogen Clostridium drakei isolated from peat. FEMS Microbiol. Lett. 2008, 287:236-242.
    • (2008) FEMS Microbiol. Lett. , vol.287 , pp. 236-242
    • Gößner, A.S.1
  • 56
    • 43949085385 scopus 로고    scopus 로고
    • 2 consumption in dark fermentation and effectiveness of pH
    • 2 consumption in dark fermentation and effectiveness of pH. Water Sci. Technol. 2008, 57:809-814.
    • (2008) Water Sci. Technol. , vol.57 , pp. 809-814
    • Calli, B.1
  • 57
    • 20044370112 scopus 로고    scopus 로고
    • Electrochemically assisted microbial production of hydrogen from acetate
    • Liu H., et al. Electrochemically assisted microbial production of hydrogen from acetate. Environ. Sci. Technol. 2005, 39:4317-4320.
    • (2005) Environ. Sci. Technol. , vol.39 , pp. 4317-4320
    • Liu, H.1
  • 58
    • 21344461500 scopus 로고    scopus 로고
    • Extracellular electron transfer via microbial nanowires
    • Reguera G., et al. Extracellular electron transfer via microbial nanowires. Nature 2005, 435:1098-1101.
    • (2005) Nature , vol.435 , pp. 1098-1101
    • Reguera, G.1
  • 59
    • 0037337606 scopus 로고    scopus 로고
    • Electricity production by Geobacter sulfurreducens attached to electrodes
    • Bond D.R., Lovley D.R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 2003, 69:1548-1555.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 1548-1555
    • Bond, D.R.1    Lovley, D.R.2
  • 60
    • 0037074898 scopus 로고    scopus 로고
    • A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciense
    • Kim H.J., et al. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciense. Enzyme Microbial. Technol. 2002, 30:145-152.
    • (2002) Enzyme Microbial. Technol. , vol.30 , pp. 145-152
    • Kim, H.J.1
  • 61
    • 33746624663 scopus 로고    scopus 로고
    • Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms
    • Gorby Y.A., et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. U. S. A. 2006, 103:11358-11363.
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , pp. 11358-11363
    • Gorby, Y.A.1
  • 62
    • 37249007807 scopus 로고    scopus 로고
    • Metabolites produced by Pseudomonas sp enable a Gram-positive bacterium to achieve extracellular electron transfer
    • Pham T.H., et al. Metabolites produced by Pseudomonas sp enable a Gram-positive bacterium to achieve extracellular electron transfer. Appl. Microbiol. Biotechnol. 2008, 77:1119-1129.
    • (2008) Appl. Microbiol. Biotechnol. , vol.77 , pp. 1119-1129
    • Pham, T.H.1
  • 63
    • 41749102419 scopus 로고    scopus 로고
    • Direct electrochemistry and electrocatalytic mechanism of evolved Escherichia coli cells in microbial fuel cells
    • Qiao Y., et al. Direct electrochemistry and electrocatalytic mechanism of evolved Escherichia coli cells in microbial fuel cells. Chem. Commun. 2008, 11:1290-1292.
    • (2008) Chem. Commun. , vol.11 , pp. 1290-1292
    • Qiao, Y.1
  • 64
    • 74849111091 scopus 로고    scopus 로고
    • Characterization of energy losses in an upflow single-chamber microbial electrolysis cell
    • Lee H.S., Rittmann B.E. Characterization of energy losses in an upflow single-chamber microbial electrolysis cell. Int. J. Hydrogen Energy 2010, 35:920-927.
    • (2010) Int. J. Hydrogen Energy , vol.35 , pp. 920-927
    • Lee, H.S.1    Rittmann, B.E.2
  • 65
    • 36749077086 scopus 로고    scopus 로고
    • Sustainable and efficient biohydrogen production via electrohydrogenesis
    • Cheng S., Logan B.E. Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:18871-18873.
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 18871-18873
    • Cheng, S.1    Logan, B.E.2
  • 66
    • 0033681074 scopus 로고    scopus 로고
    • Oxidation of acetate through reactions of the citric acid cycle by Geobacter sulfurreducens in pure culture and in syntrophic coculture
    • Galushko A.S., Schink B. Oxidation of acetate through reactions of the citric acid cycle by Geobacter sulfurreducens in pure culture and in syntrophic coculture. Arch. Microbiol. 2000, 174:314-321.
    • (2000) Arch. Microbiol. , vol.174 , pp. 314-321
    • Galushko, A.S.1    Schink, B.2
  • 67
    • 40149105737 scopus 로고    scopus 로고
    • Computational and experimental analysis of redundancy in the central metabolism of Geobacter sulfurreducens
    • Segura D., et al. Computational and experimental analysis of redundancy in the central metabolism of Geobacter sulfurreducens. PLoS Comput. Biol. 2008, 4:e36.
    • (2008) PLoS Comput. Biol. , vol.4
    • Segura, D.1
  • 68
    • 4344656907 scopus 로고    scopus 로고
    • Production of bioenergy and biochemicals from industrial and agricultural wastewater
    • Angenent L.T., et al. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol. 2004, 22:477-485.
    • (2004) Trends Biotechnol. , vol.22 , pp. 477-485
    • Angenent, L.T.1
  • 69
    • 27744556556 scopus 로고    scopus 로고
    • Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies
    • Oh S.E., Logan B.E. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res. 2005, 39:4673-4682.
    • (2005) Water Res. , vol.39 , pp. 4673-4682
    • Oh, S.E.1    Logan, B.E.2
  • 70
    • 66149189097 scopus 로고    scopus 로고
    • Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater
    • Wen Q., et al. Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater. Bioresour. Technol. 2009, 100:4171-4175.
    • (2009) Bioresour. Technol. , vol.100 , pp. 4171-4175
    • Wen, Q.1
  • 72
    • 50849127130 scopus 로고    scopus 로고
    • Kinetic experiments for evaluating the Nernst-Monod model for anode-respiring bacteria (ARB) in a biofilm anode
    • Torres C.I., et al. Kinetic experiments for evaluating the Nernst-Monod model for anode-respiring bacteria (ARB) in a biofilm anode. Environ. Sci. Technol. 2008, 42:6593-6597.
    • (2008) Environ. Sci. Technol. , vol.42 , pp. 6593-6597
    • Torres, C.I.1
  • 73
    • 70349620625 scopus 로고    scopus 로고
    • Effects of substrate diffusion and anode potential on kinetic parameters for anode-respiring bacteria
    • Lee H.S., et al. Effects of substrate diffusion and anode potential on kinetic parameters for anode-respiring bacteria. Environ. Sci. Technol. 2009, 43:7571-7577.
    • (2009) Environ. Sci. Technol. , vol.43 , pp. 7571-7577
    • Lee, H.S.1
  • 74
    • 47049116935 scopus 로고    scopus 로고
    • Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria
    • Torres C.I., et al. Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotechnol. Bioeng. 2008, 100:872-881.
    • (2008) Biotechnol. Bioeng. , vol.100 , pp. 872-881
    • Torres, C.I.1
  • 75
    • 36749093442 scopus 로고    scopus 로고
    • Conduction based modeling of the biofilm anode of a microbial fuel cell
    • Marcus A.K., et al. Conduction based modeling of the biofilm anode of a microbial fuel cell. Biotechnol. Bioeng. 2007, 98:1171-1182.
    • (2007) Biotechnol. Bioeng. , vol.98 , pp. 1171-1182
    • Marcus, A.K.1
  • 76
    • 33947385817 scopus 로고    scopus 로고
    • Electricity generation and microbial community analysis of alcohol powered microbial fuel cells
    • Kim J.R., et al. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresour. Technol. 2007, 98:2568-2577.
    • (2007) Bioresour. Technol. , vol.98 , pp. 2568-2577
    • Kim, J.R.1
  • 77
    • 36249032532 scopus 로고    scopus 로고
    • Kinetics of consumption of fermentation products by anode-respiring bacteria
    • Torres C.I., et al. Kinetics of consumption of fermentation products by anode-respiring bacteria. Appl. Microbiol. Biotechnol. 2007, 77:689-697.
    • (2007) Appl. Microbiol. Biotechnol. , vol.77 , pp. 689-697
    • Torres, C.I.1
  • 78
    • 73949088543 scopus 로고    scopus 로고
    • Microbial community structure in a biofilm anode fed with a fermentable substrate: the significance of hydrogen scavengers
    • Parameswaran P., et al. Microbial community structure in a biofilm anode fed with a fermentable substrate: the significance of hydrogen scavengers. Biotechnol. Bioeng. 2010, 105:69-78.
    • (2010) Biotechnol. Bioeng. , vol.105 , pp. 69-78
    • Parameswaran, P.1
  • 79
    • 70349610412 scopus 로고    scopus 로고
    • 2 in an upflow single-chamber microbial electrolysis cell using a metal-catalyst-free cathode
    • 2 in an upflow single-chamber microbial electrolysis cell using a metal-catalyst-free cathode. Environ. Sci. Technol. 2009, 43:7971-7976.
    • (2009) Environ. Sci. Technol. , vol.43 , pp. 7971-7976
    • Lee, H.S.1
  • 81
    • 22044446218 scopus 로고    scopus 로고
    • Kinetic characterization of Methanobacterium bryantii M.o.H
    • Karadagli F., Rittmann B.E. Kinetic characterization of Methanobacterium bryantii M.o.H. Environ. Sci. Technol. 2005, 39:4900-4905.
    • (2005) Environ. Sci. Technol. , vol.39 , pp. 4900-4905
    • Karadagli, F.1    Rittmann, B.E.2
  • 82
    • 64749085304 scopus 로고    scopus 로고
    • Advances in fermentative biohydrogen production: the way forward?
    • Hallenbeck P.C., Ghosh D. Advances in fermentative biohydrogen production: the way forward?. Trends Biotechnol. 2009, 27:287-297.
    • (2009) Trends Biotechnol. , vol.27 , pp. 287-297
    • Hallenbeck, P.C.1    Ghosh, D.2
  • 83
    • 0038740940 scopus 로고    scopus 로고
    • Alternative hydrogenases
    • Elsevier, G.J. Leigh (Ed.)
    • Masepohl B., et al. Alternative hydrogenases. Nitrogen Fixation at the Millennium 2002, 191-222. Elsevier. G.J. Leigh (Ed.).
    • (2002) Nitrogen Fixation at the Millennium , pp. 191-222
    • Masepohl, B.1
  • 84
    • 77950390914 scopus 로고    scopus 로고
    • Nitrogenase-catalyzed hydrogen production by purple nonsulfur photosynthetic bacteria
    • ASM Press, J.D. Wall, C.S. Harwood, A. Demain (Eds.)
    • Harwood C.S. Nitrogenase-catalyzed hydrogen production by purple nonsulfur photosynthetic bacteria. Bioenergy 2008, 259-271. ASM Press. J.D. Wall, C.S. Harwood, A. Demain (Eds.).
    • (2008) Bioenergy , pp. 259-271
    • Harwood, C.S.1
  • 85
    • 33847153500 scopus 로고    scopus 로고
    • Painting and printing living bacteria: engineering nanoporous biocatalytic coatings to preserve microbial viability
    • Flickinger M.C., et al. Painting and printing living bacteria: engineering nanoporous biocatalytic coatings to preserve microbial viability. Biotechnol. Prog. 2007, 23:2-17.
    • (2007) Biotechnol. Prog. , vol.23 , pp. 2-17
    • Flickinger, M.C.1
  • 86
    • 67650080009 scopus 로고    scopus 로고
    • Novel strategy for three-dimensional real-time imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation within the anode biofilm
    • Franks A.E., et al. Novel strategy for three-dimensional real-time imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation within the anode biofilm. Energy Environ. Sci. 2009, 2:113-119.
    • (2009) Energy Environ. Sci. , vol.2 , pp. 113-119
    • Franks, A.E.1
  • 87
    • 0037266296 scopus 로고    scopus 로고
    • Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens
    • Lloyd J.R., et al. Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens. Biochem. J. 2003, 369:153-161.
    • (2003) Biochem. J. , vol.369 , pp. 153-161
    • Lloyd, J.R.1
  • 88
    • 0035477081 scopus 로고    scopus 로고
    • Isolation, characterization, and gene sequence analysis of a membrane associated 89 kDa Fe(III) reducing cytochrome from Geobacter sulfurreducens
    • Magnuson T.S., et al. Isolation, characterization, and gene sequence analysis of a membrane associated 89 kDa Fe(III) reducing cytochrome from Geobacter sulfurreducens. Biochem. J. 2001, 359:147-152.
    • (2001) Biochem. J. , vol.359 , pp. 147-152
    • Magnuson, T.S.1
  • 89
    • 0029962706 scopus 로고    scopus 로고
    • Purification and properties of a low-redox-potential tetraheme cytochrome c(3) from Shewanella putrefaciens
    • Tsapin A.I., et al. Purification and properties of a low-redox-potential tetraheme cytochrome c(3) from Shewanella putrefaciens. J. Bacteriol. 1996, 178:6386-6388.
    • (1996) J. Bacteriol. , vol.178 , pp. 6386-6388
    • Tsapin, A.I.1
  • 90
    • 0942266846 scopus 로고    scopus 로고
    • Thermal conductivities from temperature profiles in the polymer electrolyte fuel cell
    • Vie P.J.S., Kjelstrup S. Thermal conductivities from temperature profiles in the polymer electrolyte fuel cell. Electrochim. Acta 2004, 49:1069-1077.
    • (2004) Electrochim. Acta , vol.49 , pp. 1069-1077
    • Vie, P.J.S.1    Kjelstrup, S.2
  • 92
    • 0016758743 scopus 로고
    • Anaerobic digestion: the rate-limiting process and nature of inhibition
    • Finney C.D., Evans R.S. Anaerobic digestion: the rate-limiting process and nature of inhibition. Science 1975, 190:1088-1089.
    • (1975) Science , vol.190 , pp. 1088-1089
    • Finney, C.D.1    Evans, R.S.2
  • 93
    • 0035956594 scopus 로고    scopus 로고
    • Competition between homoacetogenic bacteria and methanogenic archaea for hydrogen at low temperature
    • Kotsyurbenko O.R., et al. Competition between homoacetogenic bacteria and methanogenic archaea for hydrogen at low temperature. FEMS Microbiol. Ecol. 2001, 38:153-159.
    • (2001) FEMS Microbiol. Ecol. , vol.38 , pp. 153-159
    • Kotsyurbenko, O.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.