-
1
-
-
33748566549
-
Microbial fuel cells: Methodology and technology
-
Logan, B. E.; Hamelers, B.; Rozendal, R.; Schröder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 2006, 40, 5181-5192.
-
(2006)
Environ. Sci. Technol
, vol.40
, pp. 5181-5192
-
-
Logan, B.E.1
Hamelers, B.2
Rozendal, R.3
Schröder, U.4
Keller, J.5
Freguia, S.6
Aelterman, P.7
Verstraete, W.8
Rabaey, K.9
-
2
-
-
19444367096
-
Microbial fuel cells: Novel biotechnology for energy generation
-
Rabaey, K.; Verstraete, W. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 2005, 23, 291-298.
-
(2005)
Trends Biotechnol
, vol.23
, pp. 291-298
-
-
Rabaey, K.1
Verstraete, W.2
-
3
-
-
50849102056
-
Understanding the Distinguishing Features of a Microbial Fuel Cell as a Biomass-Based Renewable Energy Technology
-
Shah, V, Ed, Springer, In Press
-
Rittmann, B. E.; Torres, C. I.; Marcus, A. K. Understanding the Distinguishing Features of a Microbial Fuel Cell as a Biomass-Based Renewable Energy Technology. In Emerging Environmental Technologies; Shah, V., Ed.; Springer, In Press.
-
Emerging Environmental Technologies
-
-
Rittmann, B.E.1
Torres, C.I.2
Marcus, A.K.3
-
4
-
-
34248598452
-
Increased power production from a sediment microbial fuel cell with a rotating cathode
-
He, Z.; Shao, H. B.; Angenent, L. T. Increased power production from a sediment microbial fuel cell with a rotating cathode. Biosens. Bioelectron. 2007, 22, 3252-3255.
-
(2007)
Biosens. Bioelectron
, vol.22
, pp. 3252-3255
-
-
He, Z.1
Shao, H.B.2
Angenent, L.T.3
-
5
-
-
33645889973
-
Harvesting energy from the marine sediment-water interface II - Kinetic activity of anode materials
-
Lowy, D. A.; Tender, L. M.; Zeikus, J. G.; Park, D. H.; Lovley, D. R. Harvesting energy from the marine sediment-water interface II - Kinetic activity of anode materials. Biosens. Bioelectron. 2006, 21, 2058-2063.
-
(2006)
Biosens. Bioelectron
, vol.21
, pp. 2058-2063
-
-
Lowy, D.A.1
Tender, L.M.2
Zeikus, J.G.3
Park, D.H.4
Lovley, D.R.5
-
6
-
-
0038546460
-
A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell
-
Pham, C. A.; Jung, S. J.; Phung, N. T.; Lee, J.; Chang, I. S.; Kim, B. H.; Yi, H.; Chun, J. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol. Lett. 2003, 223, 129-134.
-
(2003)
FEMS Microbiol. Lett
, vol.223
, pp. 129-134
-
-
Pham, C.A.1
Jung, S.J.2
Phung, N.T.3
Lee, J.4
Chang, I.S.5
Kim, B.H.6
Yi, H.7
Chun, J.8
-
7
-
-
18344391948
-
Microbial phenazine production enhances electron transfer in biofuel cells
-
Rabaey, K.; Boon, N.; Hofte, M.; Verstraete, W. Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. 2005, 39, 3401-3408.
-
(2005)
Environ. Sci. Technol
, vol.39
, pp. 3401-3408
-
-
Rabaey, K.1
Boon, N.2
Hofte, M.3
Verstraete, W.4
-
8
-
-
47049116935
-
Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria
-
Torres, C. I.; Marcus, A. K.; Rittmann, B. E. Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotechnol. Bioeng. 2008, 100 (5), 872-881.
-
(2008)
Biotechnol. Bioeng
, vol.100
, Issue.5
, pp. 872-881
-
-
Torres, C.I.1
Marcus, A.K.2
Rittmann, B.E.3
-
9
-
-
41649085415
-
Shewanella secretes flavins that mediate extracellular electron transfer
-
Marsili, E.; Baron, D. B.; Shikhare, I. D.; Coursolle, D.; Gralnick, J. A.; Bond, D. R. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl. Acad. Sci., U. S. A. 2008, 105, 3968-3973.
-
(2008)
Proc. Natl. Acad. Sci., U. S. A
, vol.105
, pp. 3968-3973
-
-
Marsili, E.1
Baron, D.B.2
Shikhare, I.D.3
Coursolle, D.4
Gralnick, J.A.5
Bond, D.R.6
-
10
-
-
37249007807
-
Metabolites produced by Pseudomonas sp enable a Gram-positive bacterium to achieve extracellular electron transfer
-
Pham, T. H.; Boon, N.; Aelterman, P.; Clauwaert, P.; De Schamphelaire, L.; Vanhaecke, L.; De Maeyer, K.; Hofte, M.; Verstraete, W.; Rabaey, K. Metabolites produced by Pseudomonas sp enable a Gram-positive bacterium to achieve extracellular electron transfer. Appl. Microbiol. Biotechnol. 2008, 77, 1119-1129.
-
(2008)
Appl. Microbiol. Biotechnol
, vol.77
, pp. 1119-1129
-
-
Pham, T.H.1
Boon, N.2
Aelterman, P.3
Clauwaert, P.4
De Schamphelaire, L.5
Vanhaecke, L.6
De Maeyer, K.7
Hofte, M.8
Verstraete, W.9
Rabaey, K.10
-
11
-
-
4644305766
-
Biofuel cells select for microbial consortia that self-mediate electron transfer
-
Rabaey, K.; Boon, N.; Siciliano, S. D.; Verhaege, M.; Verstraete, W. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 2004, 70, 5373-5382.
-
(2004)
Appl. Environ. Microbiol
, vol.70
, pp. 5373-5382
-
-
Rabaey, K.1
Boon, N.2
Siciliano, S.D.3
Verhaege, M.4
Verstraete, W.5
-
13
-
-
34250022204
-
A computational model for biofilm-based microbial fuel cells
-
Picioreanu, C.; Head, I. M.; Katuri, K. P.; van Loosdrecht, M. C. M.; Scott, K. A computational model for biofilm-based microbial fuel cells. Water Res. 2007, 41, 2921-2940.
-
(2007)
Water Res
, vol.41
, pp. 2921-2940
-
-
Picioreanu, C.1
Head, I.M.2
Katuri, K.P.3
van Loosdrecht, M.C.M.4
Scott, K.5
-
14
-
-
33746624663
-
-
Gorby, Y. A.; Yanina, S.; McLean, J. S.; Rosso, K. M.; Moyles, D.; Dohnalkova, A.; Beveridge, T. J.; Chang, I. S.; Kim, B. H.; Kim, K. S.; Culley, D. E.; Reed, S. B.; Romine, M. F.; Saffarini, D. A.; Hill, E. A.; Shi, L.; Elias, D. A.; Kennedy, D. W.; Pinchuk, G.; Watanabe, K.; Ishii, S.; Logan, B.; Nealson, K. H.; Fredrickson, J. K. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci., U. S. A. 2006, 103, 11358-11363.
-
Gorby, Y. A.; Yanina, S.; McLean, J. S.; Rosso, K. M.; Moyles, D.; Dohnalkova, A.; Beveridge, T. J.; Chang, I. S.; Kim, B. H.; Kim, K. S.; Culley, D. E.; Reed, S. B.; Romine, M. F.; Saffarini, D. A.; Hill, E. A.; Shi, L.; Elias, D. A.; Kennedy, D. W.; Pinchuk, G.; Watanabe, K.; Ishii, S.; Logan, B.; Nealson, K. H.; Fredrickson, J. K. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci., U. S. A. 2006, 103, 11358-11363.
-
-
-
-
15
-
-
33751014053
-
Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells
-
Reguera, G.; Nevin, K. P.; Nicoll, J. S.; Covalla, S. F.; Woodard, T. L.; Lovley, D. R. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl. Environ. Microbiol. 2006, 72, 7345-7348.
-
(2006)
Appl. Environ. Microbiol
, vol.72
, pp. 7345-7348
-
-
Reguera, G.1
Nevin, K.P.2
Nicoll, J.S.3
Covalla, S.F.4
Woodard, T.L.5
Lovley, D.R.6
-
16
-
-
84984755266
-
Biotechnology - Supercharged: The biofilm anode
-
Jones, S. Biotechnology - Supercharged: the biofilm anode. Nat. Rev. Microbiol. 2008, 6, 173-173.
-
(2008)
Nat. Rev. Microbiol
, vol.6
, pp. 173-173
-
-
Jones, S.1
-
17
-
-
36749093442
-
Conduction-based modeling of the biofilm anode of a microbial fuel cell
-
Marcus, A. K.; Torres, C. I.; Rittmann, B. E. Conduction-based modeling of the biofilm anode of a microbial fuel cell. Biotechnol. Bioeng. 2007, 98, 1171-1182.
-
(2007)
Biotechnol. Bioeng
, vol.98
, pp. 1171-1182
-
-
Marcus, A.K.1
Torres, C.I.2
Rittmann, B.E.3
-
19
-
-
36249032532
-
Kinetics of consumption of fermentation products by anode-respiring bacteria
-
Torres, C. I.; Kato Marcus, A.; Rittmann, B. E. Kinetics of consumption of fermentation products by anode-respiring bacteria. Appl. Microbiol. Biotechnol. 2007, 77, 689-697.
-
(2007)
Appl. Microbiol. Biotechnol
, vol.77
, pp. 689-697
-
-
Torres, C.I.1
Kato Marcus, A.2
Rittmann, B.E.3
-
20
-
-
0021243917
-
Selective-inhibition by 2-bromoethanesulfonate of methanogenesis from acetate in a thermophilic anaerobic digester
-
Zinder, S. H.; Anguish, T.; Cardwell, S. C. Selective-inhibition by 2-bromoethanesulfonate of methanogenesis from acetate in a thermophilic anaerobic digester. Appl. Environ. Microbiol. 1984, 47, 1343-1345.
-
(1984)
Appl. Environ. Microbiol
, vol.47
, pp. 1343-1345
-
-
Zinder, S.H.1
Anguish, T.2
Cardwell, S.C.3
-
21
-
-
40749115223
-
Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates
-
Lee, H. S.; Parameswaran, P.; Marcus, A. K.; Torres, C. I.; Rittmann, B. E. Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Res. 2008, 42, 1501-1510.
-
(2008)
Water Res
, vol.42
, pp. 1501-1510
-
-
Lee, H.S.1
Parameswaran, P.2
Marcus, A.K.3
Torres, C.I.4
Rittmann, B.E.5
-
22
-
-
33745775000
-
The iR drop - well-known but often underestimated in electrochemical polarization measurements and corrosion testing
-
Oelssner, W.; Berthold, F.; Guth, U. The iR drop - well-known but often underestimated in electrochemical polarization measurements and corrosion testing. Mater. Corros. 2006, 57, 455-466.
-
(2006)
Mater. Corros
, vol.57
, pp. 455-466
-
-
Oelssner, W.1
Berthold, F.2
Guth, U.3
-
23
-
-
41249086920
-
Electrochemical characterization of Geobacter sulfurreducens cells immobilized on graphite paper electrodes
-
Srikanth, S.; Marsili, E.; Flickinger, M. C.; Bond, D. R. Electrochemical characterization of Geobacter sulfurreducens cells immobilized on graphite paper electrodes. Biotechnol. Bioeng. 2008, 99, 1065-1073.
-
(2008)
Biotechnol. Bioeng
, vol.99
, pp. 1065-1073
-
-
Srikanth, S.1
Marsili, E.2
Flickinger, M.C.3
Bond, D.R.4
-
24
-
-
35948971384
-
Microbial nanowires: Is the subsurface "hardwired"?
-
Ntarlagiannis, D.; Atekwana, E. A.; Hill, E. A.; Gorby, Y. Microbial nanowires: Is the subsurface "hardwired"? Geophys. Res. Lett. 2007, 34, L17305.
-
(2007)
Geophys. Res. Lett
, vol.34
-
-
Ntarlagiannis, D.1
Atekwana, E.A.2
Hill, E.A.3
Gorby, Y.4
|