메뉴 건너뛰기




Volumn 34, Issue 2, 2009, Pages 672-677

High rate membrane-less microbial electrolysis cell for continuous hydrogen production

Author keywords

Hydrogen; MEC; Membrane less; MFC

Indexed keywords

CELL MEMBRANES; ELECTROCHEMISTRY; ELECTRODES; ELECTROLYSIS; ELECTROLYTIC CELLS; GAS FUEL MANUFACTURE; GAS PRODUCERS; HYDROGEN; MEMBRANES; METHANATION; METHANE; MICROBIAL FUEL CELLS; NONMETALS; PLATINUM;

EID: 58549087922     PISSN: 03603199     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijhydene.2008.11.003     Document Type: Article
Times cited : (208)

References (21)
  • 2
    • 20044370112 scopus 로고    scopus 로고
    • Electrochemically assisted microbial production of hydrogen from acetate
    • Liu H., Grot S., and Logan B.E. Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39 (2005) 4317-4320
    • (2005) Environ Sci Technol , vol.39 , pp. 4317-4320
    • Liu, H.1    Grot, S.2    Logan, B.E.3
  • 3
    • 34047125848 scopus 로고    scopus 로고
    • Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes
    • Rozendal R.A., Hamelers H.V.M., Molenkamp R.J., and Buisman C.J.N. Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Res 41 (2007) 1984-1994
    • (2007) Water Res , vol.41 , pp. 1984-1994
    • Rozendal, R.A.1    Hamelers, H.V.M.2    Molenkamp, R.J.3    Buisman, C.J.N.4
  • 4
    • 36749077086 scopus 로고    scopus 로고
    • Sustainable and efficient biohydrogen production via electrohydrogenesis
    • Cheng S., and Logan B.E. Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci U S A 104 (2007) 18871-18873
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 18871-18873
    • Cheng, S.1    Logan, B.E.2
  • 5
    • 34548137689 scopus 로고    scopus 로고
    • Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR)
    • Ditzig J., Liu H., and Logan B.E. Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR). Int J Hydrogen Energy 32 (2007) 2296-2304
    • (2007) Int J Hydrogen Energy , vol.32 , pp. 2296-2304
    • Ditzig, J.1    Liu, H.2    Logan, B.E.3
  • 7
    • 52249112253 scopus 로고    scopus 로고
    • Biohydrogen production via biocatalyzed electrolysis in acetate-fed bioelectrochemical cells and microbial community analysis
    • Chae K.J., Choi M.J., Lee J., Ajayi F.F., and Kim I.S. Biohydrogen production via biocatalyzed electrolysis in acetate-fed bioelectrochemical cells and microbial community analysis. Int J Hydrogen Energy 33 (2008) 5184-5192
    • (2008) Int J Hydrogen Energy , vol.33 , pp. 5184-5192
    • Chae, K.J.1    Choi, M.J.2    Lee, J.3    Ajayi, F.F.4    Kim, I.S.5
  • 8
    • 41649109093 scopus 로고    scopus 로고
    • Thermodynamic evaluation on H2 production in glucose fermentation
    • Lee H.-S., Salerno M.B., and Rittmann B.E. Thermodynamic evaluation on H2 production in glucose fermentation. Environ Sci Technol 42 (2008) 2401-2407
    • (2008) Environ Sci Technol , vol.42 , pp. 2401-2407
    • Lee, H.-S.1    Salerno, M.B.2    Rittmann, B.E.3
  • 9
    • 47049085042 scopus 로고    scopus 로고
    • Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane
    • Call D., and Logan B.E. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ Sci Technol 42 (2008) 3401-3406
    • (2008) Environ Sci Technol , vol.42 , pp. 3401-3406
    • Call, D.1    Logan, B.E.2
  • 10
    • 84985666212 scopus 로고
    • Use of the upflow sludge blanket (USB) reactor concept for biological treatment, especially for anaerobic treatment
    • Lettinga G., Van Nelsen A., Hobma S., de Zeeuw W., and Klapwijk A. Use of the upflow sludge blanket (USB) reactor concept for biological treatment, especially for anaerobic treatment. Biotechnol Bioeng 22 (1980) 699-734
    • (1980) Biotechnol Bioeng , vol.22 , pp. 699-734
    • Lettinga, G.1    Van Nelsen, A.2    Hobma, S.3    de Zeeuw, W.4    Klapwijk, A.5
  • 11
    • 0032590408 scopus 로고    scopus 로고
    • Advanced control of anaerobic digestion processes through disturbances monitoring
    • Steyer J.P., Buffiere P., Rolland D., and Moletta R. Advanced control of anaerobic digestion processes through disturbances monitoring. Water Res 33 (1999) 2059-2068
    • (1999) Water Res , vol.33 , pp. 2059-2068
    • Steyer, J.P.1    Buffiere, P.2    Rolland, D.3    Moletta, R.4
  • 12
    • 44649101939 scopus 로고    scopus 로고
    • Biocatalyzed hydrogen production in a continuous flow microbial fuel cell with a gas phase cathode
    • Tartakovsky B., Manuel M.F., Neburchilov V., Wang H., and Guiot S.R. Biocatalyzed hydrogen production in a continuous flow microbial fuel cell with a gas phase cathode. J Power Sources 182 (2008) 291-297
    • (2008) J Power Sources , vol.182 , pp. 291-297
    • Tartakovsky, B.1    Manuel, M.F.2    Neburchilov, V.3    Wang, H.4    Guiot, S.R.5
  • 13
  • 14
    • 36749093442 scopus 로고    scopus 로고
    • Conduction-based modeling of the biofilm anode of a microbial fuel cell
    • Marcus A.K., Torres C.I., and Rittmann B.E. Conduction-based modeling of the biofilm anode of a microbial fuel cell. Biotechnol Bioeng 98 (2007) 1171-1182
    • (2007) Biotechnol Bioeng , vol.98 , pp. 1171-1182
    • Marcus, A.K.1    Torres, C.I.2    Rittmann, B.E.3
  • 15
    • 33748545968 scopus 로고    scopus 로고
    • Effects of membrane cation transport on pH and microbial fuel cell performance
    • Rozendal R.A., Hamelers H.V.M., and Buisman C.J.N. Effects of membrane cation transport on pH and microbial fuel cell performance. Environ Sci Technol 40 (2006) 5206-5211
    • (2006) Environ Sci Technol , vol.40 , pp. 5206-5211
    • Rozendal, R.A.1    Hamelers, H.V.M.2    Buisman, C.J.N.3
  • 16
    • 39049117489 scopus 로고    scopus 로고
    • Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells
    • Chae K.J., Choi M., Ajayi F.F., Park W., Chang I.S., and Kim I.S. Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells. Energy Fuels 22 (2008) 169-176
    • (2008) Energy Fuels , vol.22 , pp. 169-176
    • Chae, K.J.1    Choi, M.2    Ajayi, F.F.3    Park, W.4    Chang, I.S.5    Kim, I.S.6
  • 17
    • 3242707506 scopus 로고    scopus 로고
    • Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane
    • Liu H., and Logan B.E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38 (2004) 4040-4046
    • (2004) Environ Sci Technol , vol.38 , pp. 4040-4046
    • Liu, H.1    Logan, B.E.2
  • 18
    • 34548451055 scopus 로고    scopus 로고
    • Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration
    • Fan Y., Hu H., and Liu H. Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J Power Sources 171 (2007) 348-354
    • (2007) J Power Sources , vol.171 , pp. 348-354
    • Fan, Y.1    Hu, H.2    Liu, H.3
  • 19
    • 33750443594 scopus 로고    scopus 로고
    • Application of bacterial biocathodes in microbial fuel cells
    • He Z., and Angenent L.T. Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 18 (2006) 2009-2015
    • (2006) Electroanalysis , vol.18 , pp. 2009-2015
    • He, Z.1    Angenent, L.T.2
  • 21


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.