메뉴 건너뛰기




Volumn 31, Issue 2, 2004, Pages 169-182

An evaluation of a system that recommends microarray experiments to perform to discover gene-regulation pathways

Author keywords

Causal Bayesian networks; Causal discovery; Microarray study design; Systems biology

Indexed keywords

DATA REDUCTION; GENES; MATHEMATICAL MODELS; PROBABILITY; STATISTICAL METHODS;

EID: 3042632570     PISSN: 09333657     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.artmed.2004.01.018     Document Type: Article
Times cited : (22)

References (50)
  • 1
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper G.F., Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Machine Learning. 9:1992;309-347
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 5
    • 0001796586 scopus 로고    scopus 로고
    • Bayesian methods in health-related research
    • Berry DA, Stangl DK, editors. New York: Marcel Dekker
    • Berry DA, Stangl DK. Bayesian methods in health-related research. In: Berry DA, Stangl DK, editors. Bayesian Biostatistics. New York: Marcel Dekker; 1996. p. 3-66.
    • (1996) Bayesian Biostatistics , pp. 3-66
    • Berry, D.A.1    Stangl, D.K.2
  • 7
    • 0033168258 scopus 로고    scopus 로고
    • Integrated pathway/genome database and their role in drug discovery
    • Karp P.D., et al. Integrated pathway/genome database and their role in drug discovery. Trends Biotechnol. 17(7):1999;275-281
    • (1999) Trends Biotechnol. , vol.17 , Issue.7 , pp. 275-281
    • Karp, P.D.1
  • 8
    • 0000884487 scopus 로고    scopus 로고
    • Experimental design for gene expression microarrays
    • Kerr M.K., Churchill G.A. Experimental design for gene expression microarrays. Biostatistics. 2:2001;183-201
    • (2001) Biostatistics , vol.2 , pp. 183-201
    • Kerr, M.K.1    Churchill, G.A.2
  • 9
    • 3042524016 scopus 로고    scopus 로고
    • Algorithms for choosing differential gene expression experiments
    • Karp RM, Stoughton R, Yeung KY. Algorithms for choosing differential gene expression experiments. Res Comput Biol 1999.
    • (1999) Res Comput Biol
    • Karp, R.M.1    Stoughton, R.2    Yeung, K.Y.3
  • 10
    • 0033642067 scopus 로고    scopus 로고
    • Discovery of regulatory interactions through perturbation: Inference and experimental design
    • Ideker T, Thorsson V, Karp RM. Discovery of regulatory interactions through perturbation: inference and experimental design. In: Pacific Symposium Biocompution. 2000.
    • (2000) Pacific Symposium Biocompution
    • Ideker, T.1    Thorsson, V.2    Karp, R.M.3
  • 12
    • 84984932472 scopus 로고    scopus 로고
    • Exploring the new world of the genome with DNA microarrays
    • Brown P.O., Botstein D. Exploring the new world of the genome with DNA microarrays. Nat. Genet. 21(Supplement):1999;33-37
    • (1999) Nat. Genet. , vol.21 , Issue.SUPPL. , pp. 33-37
    • Brown, P.O.1    Botstein, D.2
  • 13
    • 84984933234 scopus 로고    scopus 로고
    • High density synthetic oligonucleotide arrays
    • Lipshutz R.J., et al. High density synthetic oligonucleotide arrays. Nat. Genet. 21(Supplement):1999;20-24
    • (1999) Nat. Genet. , vol.21 , Issue.SUPPL. , pp. 20-24
    • Lipshutz, R.J.1
  • 14
    • 0036356287 scopus 로고    scopus 로고
    • Discovery of gene-regulation pathways using local causal search
    • San Antonio, Texas
    • Yoo C, Cooper G. Discovery of gene-regulation pathways using local causal search. In: AMIA. San Antonio, Texas, 2002.
    • (2002) AMIA
    • Yoo, C.1    Cooper, G.2
  • 15
    • 0003391330 scopus 로고
    • Probabilistic reasoning in intelligent systems
    • Brachman RJ, editor. San Mateo, CA: Morgan Kaufmann
    • Pearl J. Probabilistic reasoning in intelligent systems. In: Brachman RJ, editor. Representation and reasoning. San Mateo, CA: Morgan Kaufmann; 1988.
    • (1988) Representation and Reasoning
    • Pearl, J.1
  • 16
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman D., Geiger D., Chickering D. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning. 20:1995;197-243
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.3
  • 17
    • 0008634521 scopus 로고    scopus 로고
    • Discovery of a gene-regulation pathway from a mixture of experimental and observational DNA microarray data
    • Maui, Hawaii: World Scientific;
    • Yoo C, Thorsson V, Cooper GF. Discovery of a gene-regulation pathway from a mixture of experimental and observational DNA microarray data. In: Pacific Symposium on biocomputing. Maui, Hawaii: World Scientific; 2002.
    • (2002) Pacific Symposium on Biocomputing
    • Yoo, C.1    Thorsson, V.2    Cooper, G.F.3
  • 18
    • 3042677828 scopus 로고    scopus 로고
    • Causal discovery of latent-variable models from a mixture of experimental and observational data
    • Pittsburgh, PA: Center for Biomedical Informatics;
    • Yoo C, Cooper G. Causal discovery of latent-variable models from a mixture of experimental and observational data. In: CBMI Research Report CBMI-173. Pittsburgh, PA: Center for Biomedical Informatics; 2001.
    • (2001) CBMI Research Report CBMI-173
    • Yoo, C.1    Cooper, G.2
  • 20
    • 85012775611 scopus 로고
    • Propagating uncertainty in Bayesian networks by probabilistic logic sampling
    • Lemmer JF, Kanal LN, editors. North-Holland: Amsterdam
    • Henrion M. Propagating uncertainty in Bayesian networks by probabilistic logic sampling. In: Lemmer JF, Kanal LN, editors. Uncertainty in artificial intelligence 2. North-Holland: Amsterdam; 1988. p. 149-63.
    • (1988) Uncertainty in Artificial Intelligence 2 , pp. 149-163
    • Henrion, M.1
  • 25
    • 3042584820 scopus 로고
    • Use of Bayesian analysis to design of clinical trials with one treatment
    • Achcar J.A. Use of Bayesian analysis to design of clinical trials with one treatment. Commun. Stat. Theory Methods. 13:1984;1693-1707
    • (1984) Commun. Stat. Theory Methods , vol.13 , pp. 1693-1707
    • Achcar, J.A.1
  • 27
    • 0012315692 scopus 로고    scopus 로고
    • A Bayesian approach to causal discovery
    • Glymour C, Cooper GF, editors. Menlo Park, CA: AAAI Press;
    • Heckerman D, Meek C, Cooper GF. A Bayesian approach to causal discovery. In: Glymour C, Cooper GF, editors. Computation, causation, and discovery. Menlo Park, CA: AAAI Press; 1999. p. 141-65.
    • (1999) Computation, Causation, and Discovery , pp. 141-165
    • Heckerman, D.1    Meek, C.2    Cooper, G.F.3
  • 28
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • Spellman P.T., et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell. 9:1998;3273-3297
    • (1998) Mol. Biol. Cell , vol.9 , pp. 3273-3297
    • Spellman, P.T.1
  • 29
    • 0035805255 scopus 로고    scopus 로고
    • Integrated genomic and proteomic analysis of a systematically perturbed metabolic network
    • Ideker T., et al. Integrated genomic and proteomic analysis of a systematically perturbed metabolic network. Science. 292:2001;929-934
    • (2001) Science , vol.292 , pp. 929-934
    • Ideker, T.1
  • 30
    • 0031616361 scopus 로고    scopus 로고
    • Cluster analysis and data visualization of large-scale gene expression data
    • Michaels GS, et al. Cluster analysis and data visualization of large-scale gene expression data. Pacific Symposium on biocomputing. 1998.
    • (1998) Pacific Symposium on Biocomputing
    • Michaels, G.S.1
  • 31
    • 0345580221 scopus 로고    scopus 로고
    • Large-scale clustering of cDNA-fingerprinting data
    • Herwig R., et al. Large-scale clustering of cDNA-fingerprinting data. Genome Res. 9:1999;1093-1105
    • (1999) Genome Res. , vol.9 , pp. 1093-1105
    • Herwig, R.1
  • 32
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub T.R., et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 286:1999;531-537
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1
  • 33
    • 3042673056 scopus 로고    scopus 로고
    • Unpublished manuscript, Bioinformatics Laboratory at University of Waterloo;
    • Tsang J. Gene expression, DNA arrays, and genetic network. In: Unpublished manuscript, Bioinformatics Laboratory at University of Waterloo; 1999.
    • (1999) Gene Expression, DNA Arrays, and Genetic Network
    • Tsang, J.1
  • 34
    • 3042631189 scopus 로고    scopus 로고
    • Unpublished manuscript. Literature thesis at Utrecht University
    • Dutilh B. Gene networks from microarray data. In: Unpublished manuscript. Literature thesis at Utrecht University; 1999.
    • (1999) Gene Networks from Microarray Data
    • Dutilh, B.1
  • 35
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and simulation of genetic regulatory systems: A literature review
    • de Jong H. Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9(1):2002;67-103
    • (2002) J. Comput. Biol. , vol.9 , Issue.1 , pp. 67-103
    • De Jong, H.1
  • 36
    • 0033782304 scopus 로고    scopus 로고
    • Modeling transciptional control in gene networks - Methods
    • Smolen P., Baxter D.A., Byrne J.H. Modeling transciptional control in gene networks - methods. Bull. Math. Biol. 62:2000;247-292
    • (2000) Bull. Math. Biol. , vol.62 , pp. 247-292
    • Smolen, P.1    Baxter, D.A.2    Byrne, J.H.3
  • 38
    • 0008720627 scopus 로고
    • Hypothesis formation as design
    • Shrager J, Langley P, editors. San Mateo, CA: Morgan Kaufman
    • Karp PD. Hypothesis formation as design. In: Shrager J, Langley P, editors. Computational models of discovery and theory formation. San Mateo, CA: Morgan Kaufman; 1990. p. 276-317.
    • (1990) Computational Models of Discovery and Theory Formation , pp. 276-317
    • Karp, P.D.1
  • 40
    • 0032616683 scopus 로고    scopus 로고
    • Identification of genetic networks from a small number of gene expression patterns under the Boolean network model
    • Hawaii;
    • Akutsu T, Miyano S, Kuhara S. Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. In: Pacific Symposium on biocomputing. Hawaii; 1999.
    • (1999) Pacific Symposium on Biocomputing
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 41
    • 0033031386 scopus 로고    scopus 로고
    • E-CELL: Software environment for whole cell simulation
    • Tomita M., et al. E-CELL: software environment for whole cell simulation. Bioinformatics. 15(1):1999;72-84
    • (1999) Bioinformatics , vol.15 , Issue.1 , pp. 72-84
    • Tomita, M.1
  • 44
    • 0034404253 scopus 로고    scopus 로고
    • Combinatorial explosion in model gene networks
    • Edwards R., Glass L. Combinatorial explosion in model gene networks. Chaos. 10:2000;691-704
    • (2000) Chaos , vol.10 , pp. 691-704
    • Edwards, R.1    Glass, L.2
  • 46
    • 0003421415 scopus 로고
    • The jacknife, the boostrap and other resampling plans
    • Efron B. The jacknife, the boostrap and other resampling plans. Soc. Ind. Appl. Math. 1092:1982;2-5
    • (1982) Soc. Ind. Appl. Math. , vol.1092 , pp. 2-5
    • Efron, B.1
  • 47
    • 0033818954 scopus 로고    scopus 로고
    • A concise guide to cDNA microarray analysis
    • Hegde P., et al. A concise guide to cDNA microarray analysis. Biotechniques. 29(3):2000;548-562
    • (2000) Biotechniques , vol.29 , Issue.3 , pp. 548-562
    • Hegde, P.1
  • 49
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman N, et al. Using Bayesian networks to analyze expression data. J Computat Biol 2000.
    • (2000) J Computat Biol
    • Friedman, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.