-
1
-
-
0028424239
-
Improving generalization with active learning
-
D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active learning. Machine Learning, 15:201-221, 1994.
-
(1994)
Machine Learning
, vol.15
, pp. 201-221
-
-
Cohn, D.1
Atlas, L.2
Ladner, R.3
-
5
-
-
0002219642
-
Learning Bayesian network structure from massive datasets: The "sparse candidate" algorithm
-
Stockholm, Sweden
-
N. Friedman, I. Nachman, and D. Peér. Learning Bayesian network structure from massive datasets: The "sparse candidate" algorithm. In Proc. 15th Conf. on Uncertainty in Artificial Intelligence, pp. 206-215, Stockholm, Sweden, 1999.
-
(1999)
Proc. 15th Conf. on Uncertainty in Artificial Intelligence
, pp. 206-215
-
-
Friedman, N.1
Nachman, I.2
Peér, D.3
-
7
-
-
0030193409
-
PALO: A probabilistic hill-climbing algorithm
-
R. Greiner. PALO: A probabilistic hill-climbing algorithm. Artificial Intelligence, 84:177-208, 1996.
-
(1996)
Artificial Intelligence
, vol.84
, pp. 177-208
-
-
Greiner, R.1
-
8
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20:197-243, 1995.
-
(1995)
Machine Learning
, vol.20
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
9
-
-
84947403595
-
Probability inequalities for sums of bounded random variables
-
W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58:13-30, 1963.
-
(1963)
Journal of the American Statistical Association
, vol.58
, pp. 13-30
-
-
Hoeffding, W.1
-
10
-
-
0242529271
-
A general method for scaling up learning algorithms and its application to Bayesian networks
-
Technical report, Department of Computer Science and Engineering, University of Washington, Seattle, WA
-
G. Hulten and P. Domingos. A general method for scaling up learning algorithms and its application to Bayesian networks. Technical report, Department of Computer Science and Engineering, University of Washington, Seattle, WA, 2002.
-
(2002)
-
-
Hulten, G.1
Domingos, P.2
-
11
-
-
0035789299
-
Mining time-changing data streams
-
San Francisco, CA
-
G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data streams. In Proc. 7th ACM SIGKDD International Conf. on Knowledge Discovery and Data Mining, pp. 97-106, San Francisco, CA, 2001.
-
(2001)
Proc. 7th ACM SIGKDD International Conf. on Knowledge Discovery and Data Mining
, pp. 97-106
-
-
Hulten, G.1
Spencer, L.2
Domingos, P.3
-
12
-
-
0001880210
-
KDD-Cup 2000 organizers' report: Peeling the onion
-
R. Kohavi, C. Brodley, B. Frasca, L. Mason, and Z. Zheng. KDD-Cup 2000 organizers' report: Peeling the onion. SIGKDD Explorations, 2(2):86-98, 2000.
-
(2000)
SIGKDD Explorations
, vol.2
, Issue.2
, pp. 86-98
-
-
Kohavi, R.1
Brodley, C.2
Frasca, B.3
Mason, L.4
Zheng, Z.5
-
13
-
-
0001923944
-
Hoeffding races: Accelerating model selection search for classification and function approximation
-
Morgan Kaufmann, San Mateo, CA
-
O. Maron and A. Moore. Hoeffding races: Accelerating model selection search for classification and function approximation. In Advances in Neural Information Processing Systems 6. Morgan Kaufmann, San Mateo, CA, 1994.
-
(1994)
Advances in Neural Information Processing Systems 6
-
-
Maron, O.1
Moore, A.2
-
15
-
-
0002515248
-
Efficient progressive sampling
-
San Diego, CA
-
F. Provost, D. Jensen, and T. Oates. Efficient progressive sampling. In Proc. 5th ACM SIGKDD International Conf. on Knowledge Discovery and Data Mining, pp. 23-32, San Diego, CA, 1999.
-
(1999)
Proc. 5th ACM SIGKDD International Conf. on Knowledge Discovery and Data Mining
, pp. 23-32
-
-
Provost, F.1
Jensen, D.2
Oates, T.3
-
16
-
-
0242529272
-
Incremental maximization of non-instance-averaging utility functions with applications to knowledge discovery problems
-
Williamstown, MA
-
T. Scheffer and S. Wrobel. Incremental maximization of non-instance-averaging utility functions with applications to knowledge discovery problems. In Proc. 18th International Conf. on Machine Learning, pp. 481-488, Williamstown, MA, 2001.
-
(2001)
Proc. 18th International Conf. on Machine Learning
, pp. 481-488
-
-
Scheffer, T.1
Wrobel, S.2
|