메뉴 건너뛰기




Volumn 467, Issue C, 2009, Pages 163-196

Algebraic Models of Biochemical Networks

Author keywords

[No Author keywords available]

Indexed keywords

FUNCTIONAL GENOMICS; INFORMATION SCIENCE; LACTOSE OPERON; MATHEMATICAL MODEL; MOLECULAR DYNAMICS; PRIORITY JOURNAL; REVIEW; STOCHASTIC MODEL; SYSTEMS BIOLOGY;

EID: 71549142857     PISSN: 00766879     EISSN: None     Source Type: Book Series    
DOI: 10.1016/S0076-6879(09)67007-5     Document Type: Review
Times cited : (2)

References (95)
  • 1
    • 0032616683 scopus 로고    scopus 로고
    • Identification of genetic networks from a small number of gene expression patterns under the Boolean network model
    • Akutsu T., Miyano S., et al. Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pac. Symp. Biocomput. (1999) 17-28
    • (1999) Pac. Symp. Biocomput. , pp. 17-28
    • Akutsu, T.1    Miyano, S.2
  • 2
    • 0033642487 scopus 로고    scopus 로고
    • Algorithms for inferring qualitative models of biological networks
    • Akutsu T., Miyano S., et al. Algorithms for inferring qualitative models of biological networks. Pac. Symp. Biocomput. (2000) 293-304
    • (2000) Pac. Symp. Biocomput. , pp. 293-304
    • Akutsu, T.1    Miyano, S.2
  • 3
    • 0033737840 scopus 로고    scopus 로고
    • Inferring qualitative relations in genetic networks and metabolic pathways
    • Akutsu T., Miyano S., et al. Inferring qualitative relations in genetic networks and metabolic pathways. Bioinformatics 16 8 (2000) 727-734
    • (2000) Bioinformatics , vol.16 , Issue.8 , pp. 727-734
    • Akutsu, T.1    Miyano, S.2
  • 4
    • 0037686112 scopus 로고    scopus 로고
    • The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster
    • Albert R., and Othmer H.G. The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J. Theor. Biol. 223 1 (2003) 1-18
    • (2003) J. Theor. Biol. , vol.223 , Issue.1 , pp. 1-18
    • Albert, R.1    Othmer, H.G.2
  • 6
    • 9644284380 scopus 로고    scopus 로고
    • Inference of signaling and gene regulatory networks by steady-state perturbation experiments: Structure and accuracy
    • Andrec M., Kholodenko B.N., et al. Inference of signaling and gene regulatory networks by steady-state perturbation experiments: Structure and accuracy. J. Theor. Biol. 232 3 (2005) 427
    • (2005) J. Theor. Biol. , vol.232 , Issue.3 , pp. 427
    • Andrec, M.1    Kholodenko, B.N.2
  • 7
    • 49649117268 scopus 로고    scopus 로고
    • Critical dynamics in gene regulatory networks: Examples from four kingdoms
    • Balleza E., Alvarez-Buylla E.R., et al. Critical dynamics in gene regulatory networks: Examples from four kingdoms. PLoS One 3 6 (2008) e2456
    • (2008) PLoS One , vol.3 , Issue.6
    • Balleza, E.1    Alvarez-Buylla, E.R.2
  • 8
    • 33645307955 scopus 로고    scopus 로고
    • Inference of gene regulatory networks and compound mode of action from time course gene expression profiles
    • Bansal M., Gatta G.D., et al. Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics 22 7 (2006) 815-822
    • (2006) Bioinformatics , vol.22 , Issue.7 , pp. 815-822
    • Bansal, M.1    Gatta, G.D.2
  • 9
    • 33847055114 scopus 로고    scopus 로고
    • How to infer gene networks from expression profiles
    • 10.1038/msb4100120
    • Bansal M., Belcastro V., et al. How to infer gene networks from expression profiles. Mol. Syst. Biol. 3 (2007) 78 10.1038/msb4100120
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 78
    • Bansal, M.1    Belcastro, V.2
  • 10
    • 30044433043 scopus 로고    scopus 로고
    • The global transcriptional regulatory network for metabolism in Escherichia coli exhibits few dominant functional states
    • Barrett C.B., Herring C.D., et al. The global transcriptional regulatory network for metabolism in Escherichia coli exhibits few dominant functional states. Proc. Natl. Acad. Sci. USA 102 52 (2005) 19103-19108
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , Issue.52 , pp. 19103-19108
    • Barrett, C.B.1    Herring, C.D.2
  • 11
    • 13844253637 scopus 로고    scopus 로고
    • A Bayesian approach to reconstructing genetic regulatory networks with hidden factors
    • Beal M.J., Falciani F., et al. A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics 21 3 (2005) 349-356
    • (2005) Bioinformatics , vol.21 , Issue.3 , pp. 349-356
    • Beal, M.J.1    Falciani, F.2
  • 12
    • 4544246088 scopus 로고    scopus 로고
    • Mathematical modeling reveals threshold mechanism in CD95-induced apoptosis
    • Bentele M., Lavrik I., et al. Mathematical modeling reveals threshold mechanism in CD95-induced apoptosis. J. Cell Biol. 166 6 (2004) 839-851
    • (2004) J. Cell Biol. , vol.166 , Issue.6 , pp. 839-851
    • Bentele, M.1    Lavrik, I.2
  • 13
    • 15944361900 scopus 로고    scopus 로고
    • Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data
    • Bernard A., and Hartemink A. Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data. Pac. Symp. Biocompu. conf. proceedings (2005) pp. 459-470
    • (2005) Pac. Symp. Biocompu. conf. proceedings
    • Bernard, A.1    Hartemink, A.2
  • 16
    • 25844496994 scopus 로고    scopus 로고
    • Average path length of binary decision diagrams
    • Butler J.T., Tsutomu S., et al. Average path length of binary decision diagrams. IEEE Trans. Comput. 54 9 (2005) 1041-1053
    • (2005) IEEE Trans. Comput. , vol.54 , Issue.9 , pp. 1041-1053
    • Butler, J.T.1    Tsutomu, S.2
  • 17
    • 0034710924 scopus 로고    scopus 로고
    • Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks
    • Butte A.J., Tamayo P., et al. Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. PNAS 97 22 (2000) 12182-12186
    • (2000) PNAS , vol.97 , Issue.22 , pp. 12182-12186
    • Butte, A.J.1    Tamayo, P.2
  • 18
    • 36248953897 scopus 로고    scopus 로고
    • Comparison of reverse-engineering method using an in silico network
    • Camacho D., vera-Licona P., et al. Comparison of reverse-engineering method using an in silico network. Ann. NY Acad. Sci. 1115 (2007) 73-89
    • (2007) Ann. NY Acad. Sci. , vol.1115 , pp. 73-89
    • Camacho, D.1    vera-Licona, P.2
  • 19
    • 25444464334 scopus 로고    scopus 로고
    • Quantitative inference of dynamic regulatory pathways via microarray data
    • Chang W.-C., Li C.-W., et al. Quantitative inference of dynamic regulatory pathways via microarray data. BMC Bioinform. 6 1 (2005) 44
    • (2005) BMC Bioinform. , vol.6 , Issue.1 , pp. 44
    • Chang, W.-C.1    Li, C.-W.2
  • 20
    • 18844380444 scopus 로고    scopus 로고
    • Robustness and fragility of Boolean models for genetic regulatory networks
    • Chaves M., Albert R., et al. Robustness and fragility of Boolean models for genetic regulatory networks. J. Theor. Biol. 235 (2005) 431-449
    • (2005) J. Theor. Biol. , vol.235 , pp. 431-449
    • Chaves, M.1    Albert, R.2
  • 21
    • 33644618250 scopus 로고    scopus 로고
    • On construction of stochastic genetic networks based on gene expression sequences
    • Ching W.K., Ng M.M., Fung E.S., and Akutsu T. On construction of stochastic genetic networks based on gene expression sequences. Int. J. Neural Syst. 15 4 (2005) 297-310
    • (2005) Int. J. Neural Syst. , vol.15 , Issue.4 , pp. 297-310
    • Ching, W.K.1    Ng, M.M.2    Fung, E.S.3    Akutsu, T.4
  • 22
    • 45849093636 scopus 로고    scopus 로고
    • Boolean network model predicts cell cycle sequence of fission yeast
    • Davidich M.I., and Bornholdt S. Boolean network model predicts cell cycle sequence of fission yeast. PLoS One 3 2 (2007) e1672
    • (2007) PLoS One , vol.3 , Issue.2
    • Davidich, M.I.1    Bornholdt, S.2
  • 24
    • 0036041072 scopus 로고    scopus 로고
    • Quantifying gene networks with regulatory strengths
    • de la Fuente A., and Mendes P. Quantifying gene networks with regulatory strengths. Mol. Biol. Rep. 29 1-2 (2002) 73-77
    • (2002) Mol. Biol. Rep. , vol.29 , Issue.1-2 , pp. 73-77
    • de la Fuente, A.1    Mendes, P.2
  • 25
    • 12344321571 scopus 로고    scopus 로고
    • Discovery of meaningful associations in genomic data using partial correlation coefficients
    • de la Fuente A., Bing N., et al. Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 20 18 (2004) 3565-3574
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3565-3574
    • de la Fuente, A.1    Bing, N.2
  • 26
    • 22044438132 scopus 로고    scopus 로고
    • EXAMINE: A computational approach to reconstructing gene regulatory networks
    • Deng X., Geng H., et al. EXAMINE: A computational approach to reconstructing gene regulatory networks. Biosystems 81 2 (2005) 125
    • (2005) Biosystems , vol.81 , Issue.2 , pp. 125
    • Deng, X.1    Geng, H.2
  • 27
    • 36249016761 scopus 로고    scopus 로고
    • Proceedings of the International Symposium on Symbolic and Algebraic Computation, Assoc Comp Mach, Waterloo, CA
    • Dimitrova E., Jarrah A., et al. A Groebner-fan-based method for biochemical network modeling. Proceedings of the International Symposium on Symbolic and Algebraic Computation (2007), Assoc Comp Mach, Waterloo, CA
    • (2007) A Groebner-fan-based method for biochemical network modeling
    • Dimitrova, E.1    Jarrah, A.2
  • 29
    • 71549156636 scopus 로고    scopus 로고
    • Parameter estimation for Boolean models of biological networks
    • (in press)
    • Dimitrova E., Garcia-Puente L., et al. Parameter estimation for Boolean models of biological networks. Theor. Comp. Sci. (2009) (in press)
    • (2009) Theor. Comp. Sci.
    • Dimitrova, E.1    Garcia-Puente, L.2
  • 30
    • 33746353952 scopus 로고    scopus 로고
    • Applying dynamic Bayesian networks to perturbed gene expression data
    • Dojer N., Gambin A., et al. Applying dynamic Bayesian networks to perturbed gene expression data. BMC Bioinform. 7 1 (2006) 249
    • (2006) BMC Bioinform. , vol.7 , Issue.1 , pp. 249
    • Dojer, N.1    Gambin, A.2
  • 31
    • 33846521053 scopus 로고    scopus 로고
    • Reconstructing dynamic regulatory maps
    • Ernst J., Vainas O., et al. Reconstructing dynamic regulatory maps. Mol. Syst. Biol. 3 (2007) 74
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 74
    • Ernst, J.1    Vainas, O.2
  • 32
    • 16644389406 scopus 로고    scopus 로고
    • A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles
    • Espinosa-Soto C., Padilla-Longoria P., et al. A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. Plant Cell 16 11 (2004) 1923-1939
    • (2004) Plant Cell , vol.16 , Issue.11 , pp. 1923-1939
    • Espinosa-Soto, C.1    Padilla-Longoria, P.2
  • 33
    • 33747874092 scopus 로고    scopus 로고
    • Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle
    • Faure A., Naldi A., et al. Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 22 14 (2006) 124-131
    • (2006) Bioinformatics , vol.22 , Issue.14 , pp. 124-131
    • Faure, A.1    Naldi, A.2
  • 34
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • Friedman N. Inferring cellular networks using probabilistic graphical models. Science 303 5659 (2004) 799-805
    • (2004) Science , vol.303 , Issue.5659 , pp. 799-805
    • Friedman, N.1
  • 35
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman N., Linial M., et al. Using Bayesian networks to analyze expression data. J. Comput. Biol. 7 3-4 (2000) 601-620
    • (2000) J. Comput. Biol. , vol.7 , Issue.3-4 , pp. 601-620
    • Friedman, N.1    Linial, M.2
  • 36
    • 25444510601 scopus 로고    scopus 로고
    • Iterative approach to model identification of biological networks
    • Gadkar K., Gunawan R., et al. Iterative approach to model identification of biological networks. BMC Bioinform. 6 1 (2005) 155
    • (2005) BMC Bioinform. , vol.6 , Issue.1 , pp. 155
    • Gadkar, K.1    Gunawan, R.2
  • 37
    • 0038048325 scopus 로고    scopus 로고
    • Inferring genetic networks and identifying compound mode of action via expression profiling
    • Gardner T.S., di Bernardo D., et al. Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301 5629 (2003) 102-105
    • (2003) Science , vol.301 , Issue.5629 , pp. 102-105
    • Gardner, T.S.1    di Bernardo, D.2
  • 38
    • 3242882981 scopus 로고    scopus 로고
    • Chain functions and scoring functions in genetic networks
    • Gat-Viks I., and Shamir R. Chain functions and scoring functions in genetic networks. Bioinformatics 19 (2003) 108-117
    • (2003) Bioinformatics , vol.19 , pp. 108-117
    • Gat-Viks, I.1    Shamir, R.2
  • 39
    • 49549099084 scopus 로고    scopus 로고
    • Logical modelling of the role of the Hh pathway in the patterning of the Drosophila wing disc
    • Gonzalez A., Chaouiya C., et al. Logical modelling of the role of the Hh pathway in the patterning of the Drosophila wing disc. Bioinformatics 24 234-240 (2008) 16
    • (2008) Bioinformatics , vol.24 , Issue.234-240 , pp. 16
    • Gonzalez, A.1    Chaouiya, C.2
  • 40
    • 33845877466 scopus 로고    scopus 로고
    • Boolean network analysis of a neurotransmitter signaling pathway
    • Gupta S., Bisht S.S., et al. Boolean network analysis of a neurotransmitter signaling pathway. J. Theor. Biol. 244 3 (2007) 463-469
    • (2007) J. Theor. Biol. , vol.244 , Issue.3 , pp. 463-469
    • Gupta, S.1    Bisht, S.S.2
  • 41
    • 85040473565 scopus 로고    scopus 로고
    • A model of transcriptional regulatory networks based on biases in the observed regulation rules
    • Harris S.E., Sawhill B.K., et al. A model of transcriptional regulatory networks based on biases in the observed regulation rules. Complex Syst. 7 4 (2002) 23-40
    • (2002) Complex Syst. , vol.7 , Issue.4 , pp. 23-40
    • Harris, S.E.1    Sawhill, B.K.2
  • 42
    • 0036522639 scopus 로고    scopus 로고
    • Bayesian methods for elucidating genetic regulatory networks
    • Hartemink A., Gifford D., et al. Bayesian methods for elucidating genetic regulatory networks. IEEE Intel. Syst. 17 (2002) 37-43
    • (2002) IEEE Intel. Syst. , vol.17 , pp. 37-43
    • Hartemink, A.1    Gifford, D.2
  • 43
    • 33745178476 scopus 로고    scopus 로고
    • Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae
    • Herrgard M.J., Lee B.S., et al. Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome Res. 16 (2006) 627-635
    • (2006) Genome Res. , vol.16 , pp. 627-635
    • Herrgard, M.J.1    Lee, B.S.2
  • 44
    • 0037716676 scopus 로고    scopus 로고
    • Building with a scaffold: Emerging strategies for high- to low-level cellular modeling
    • Ideker T.E., and Lauffenburger D. Building with a scaffold: Emerging strategies for high- to low-level cellular modeling. Trends Biotechnol. 21 6 (2003) 256-262
    • (2003) Trends Biotechnol. , vol.21 , Issue.6 , pp. 256-262
    • Ideker, T.E.1    Lauffenburger, D.2
  • 45
    • 0033642067 scopus 로고    scopus 로고
    • Discovery of regulatory interactions through perturbation: Inference and experimental design
    • Ideker T.E., Thorsson V., et al. Discovery of regulatory interactions through perturbation: Inference and experimental design. Pac. Symp. Biocomput. 5 (2000) 305-316
    • (2000) Pac. Symp. Biocomput. , vol.5 , pp. 305-316
    • Ideker, T.E.1    Thorsson, V.2
  • 46
    • 0000801240 scopus 로고    scopus 로고
    • Discovering regulatory and signalling circuits in molecular interaction networks
    • Ideker T.E., Ozier O., et al. Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18 Suppl. 1 (2002) S233-S240
    • (2002) Bioinformatics , vol.18 , Issue.SUPPL. 1
    • Ideker, T.E.1    Ozier, O.2
  • 47
    • 34548036973 scopus 로고    scopus 로고
    • Nested canalyzing, unate cascade, and polynomial functions
    • Jarrah A., Raposa B., et al. Nested canalyzing, unate cascade, and polynomial functions. Physica D 233 2 (2007) 167-174
    • (2007) Physica D , vol.233 , Issue.2 , pp. 167-174
    • Jarrah, A.1    Raposa, B.2
  • 49
    • 0014489272 scopus 로고
    • Metabolic stability and epigenesis in randomly constructed genetic nets
    • Kauffman S.A. Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22 3 (1969) 437-467
    • (1969) J. Theor. Biol. , vol.22 , Issue.3 , pp. 437-467
    • Kauffman, S.A.1
  • 50
    • 0345598902 scopus 로고    scopus 로고
    • Random Boolean network models and the yeast transcriptional network
    • Kauffman S.A., Peterson C., et al. Random Boolean network models and the yeast transcriptional network. Proc. Natl. Acad. Sci. USA 100 25 (2003) 14796-14799
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , Issue.25 , pp. 14796-14799
    • Kauffman, S.A.1    Peterson, C.2
  • 51
    • 10344259662 scopus 로고    scopus 로고
    • Genetic networks with canalyzing Boolean rules are always stable
    • Kauffman S.A., Peterson C., et al. Genetic networks with canalyzing Boolean rules are always stable. Proc. Natl. Acad. Sci. USA 101 49 (2004) 17102-17107
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , Issue.49 , pp. 17102-17107
    • Kauffman, S.A.1    Peterson, C.2
  • 52
    • 2942676743 scopus 로고    scopus 로고
    • Metabolomics and systems biology: Making sense of the soup
    • Kell D.B. Metabolomics and systems biology: Making sense of the soup. Curr. Opin. Microbiol. 7 3 (2004) 296-307
    • (2004) Curr. Opin. Microbiol. , vol.7 , Issue.3 , pp. 296-307
    • Kell, D.B.1
  • 53
    • 33846909542 scopus 로고    scopus 로고
    • Least-squares methods for identifying biochemical regulatory networks from noisy measurements
    • Kim J., Bates D., et al. Least-squares methods for identifying biochemical regulatory networks from noisy measurements. BMC Bioinform. 8 1 (2007) 8
    • (2007) BMC Bioinform. , vol.8 , Issue.1 , pp. 8
    • Kim, J.1    Bates, D.2
  • 54
    • 20144387371 scopus 로고    scopus 로고
    • Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm
    • Kimura S., Ide K., et al. Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm. Bioinformatics 21 7 (2005) 1154-1163
    • (2005) Bioinformatics , vol.21 , Issue.7 , pp. 1154-1163
    • Kimura, S.1    Ide, K.2
  • 55
    • 4644301730 scopus 로고    scopus 로고
    • A benchmark for methods in reverse engineering and model discrimination: Problem formulation and solutions
    • Kremling A., Fischer S., et al. A benchmark for methods in reverse engineering and model discrimination: Problem formulation and solutions. Genome Res. 14 9 (2004) 1773-1785
    • (2004) Genome Res. , vol.14 , Issue.9 , pp. 1773-1785
    • Kremling, A.1    Fischer, S.2
  • 56
    • 3042799574 scopus 로고    scopus 로고
    • A computational algebra approach to the reverse engineering of gene regulatory networks
    • Laubenbacher R., and Stigler B. A computational algebra approach to the reverse engineering of gene regulatory networks. J. Theor. Biol. 229 (2004) 523-537
    • (2004) J. Theor. Biol. , vol.229 , pp. 523-537
    • Laubenbacher, R.1    Stigler, B.2
  • 58
    • 1842687878 scopus 로고    scopus 로고
    • The yeast cell-cycle network is robustly designed
    • Li F., Long T., et al. The yeast cell-cycle network is robustly designed. Proc. Natl. Acad. Sci. USA 101 14 (2004) 4781-4786
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , Issue.14 , pp. 4781-4786
    • Li, F.1    Long, T.2
  • 59
    • 33750270802 scopus 로고    scopus 로고
    • Predicting essential components of signal transduction networks: A dynamic model of guard cell abscisic acid signaling
    • Li S., Assman S.M., et al. Predicting essential components of signal transduction networks: A dynamic model of guard cell abscisic acid signaling. PLoS Biol. 4 10 (2006) e312
    • (2006) PLoS Biol. , vol.4 , Issue.10
    • Li, S.1    Assman, S.M.2
  • 60
    • 33644649220 scopus 로고    scopus 로고
    • Discovery of time-delayed gene regulatory networks based on temporal gene expression profiling
    • Li X., Rao S., et al. Discovery of time-delayed gene regulatory networks based on temporal gene expression profiling. BMC Bioinform. 7 1 (2006) 26
    • (2006) BMC Bioinform. , vol.7 , Issue.1 , pp. 26
    • Li, X.1    Rao, S.2
  • 61
    • 0031616241 scopus 로고    scopus 로고
    • REVEAL, a general reverse engineering algorithm for inference of genetic network architectures
    • Liang S., Fuhrman S., et al. REVEAL, a general reverse engineering algorithm for inference of genetic network architectures. Pac. Symp Biocomput. 3 (1998) 18-29
    • (1998) Pac. Symp Biocomput. , vol.3 , pp. 18-29
    • Liang, S.1    Fuhrman, S.2
  • 62
    • 0029027081 scopus 로고
    • Genetic networks
    • Loomis W.F., and Sternberg P.W. Genetic networks. Science 269 5224 (1995) 649
    • (1995) Science , vol.269 , Issue.5224 , pp. 649
    • Loomis, W.F.1    Sternberg, P.W.2
  • 63
    • 33947305781 scopus 로고    scopus 로고
    • ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
    • Margolin A.A., Nemenman I., et al. ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform. 7 Suppl. 1 (2006) S7
    • (2006) BMC Bioinform. , vol.7 , Issue.SUPPL. 1
    • Margolin, A.A.1    Nemenman, I.2
  • 64
    • 33748511015 scopus 로고    scopus 로고
    • An automated procedure for the extraction of metabolic network information from time series data
    • Marino S., and Voit E. An automated procedure for the extraction of metabolic network information from time series data. J. Bioinform. Comp. Biol. 4 3 (2006) 665-691
    • (2006) J. Bioinform. Comp. Biol. , vol.4 , Issue.3 , pp. 665-691
    • Marino, S.1    Voit, E.2
  • 65
    • 34248572623 scopus 로고    scopus 로고
    • Boolean dynamics of genetic regulatory networks inferred from microarray time series data
    • Martin S., Zhang Z., et al. Boolean dynamics of genetic regulatory networks inferred from microarray time series data. Bioinformatics 23 7 (2007) 866-874
    • (2007) Bioinformatics , vol.23 , Issue.7 , pp. 866-874
    • Martin, S.1    Zhang, Z.2
  • 66
    • 6044247613 scopus 로고    scopus 로고
    • A Boolean algorithm for reconstructing the structure of regulatory networks
    • Mehra S., Hu W.-S., et al. A Boolean algorithm for reconstructing the structure of regulatory networks. Metab. Eng. 6 4 (2004) 326
    • (2004) Metab. Eng. , vol.6 , Issue.4 , pp. 326
    • Mehra, S.1    Hu, W.-S.2
  • 67
    • 33646345600 scopus 로고    scopus 로고
    • A network model for the control of the differentiation process in Th cells
    • Mendoza L. A network model for the control of the differentiation process in Th cells. Biosystems 84 (2006) 101-114
    • (2006) Biosystems , vol.84 , pp. 101-114
    • Mendoza, L.1
  • 68
    • 0034616621 scopus 로고    scopus 로고
    • Genetic regulation of root hair development in Arabidopsis thaliana: A network model
    • Mendoza L., and Alvarez-Buylla E.R. Genetic regulation of root hair development in Arabidopsis thaliana: A network model. J. Theor. Biol. 204 (2000) 311-326
    • (2000) J. Theor. Biol. , vol.204 , pp. 311-326
    • Mendoza, L.1    Alvarez-Buylla, E.R.2
  • 69
    • 27544494569 scopus 로고    scopus 로고
    • Estimating gene regulatory networks and protein-protein interactions of Saccharomyces cerevisiae from multiple genome-wide data
    • Nariai N., Tamada Y., et al. Estimating gene regulatory networks and protein-protein interactions of Saccharomyces cerevisiae from multiple genome-wide data. Bioinformatics 21 Suppl. 2 (2005) ii206-ii212
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 2
    • Nariai, N.1    Tamada, Y.2
  • 70
    • 34447105436 scopus 로고    scopus 로고
    • Boolean networks with biologically relevant rules show ordered behavior
    • Nikolayewaa S., Friedela M., et al. Boolean networks with biologically relevant rules show ordered behavior. Biosystems 90 1 (2007) 40-47
    • (2007) Biosystems , vol.90 , Issue.1 , pp. 40-47
    • Nikolayewaa, S.1    Friedela, M.2
  • 71
    • 18144442687 scopus 로고    scopus 로고
    • Inferring subnetworks from perturbed expression profiles
    • Pe'er D., Regev A., et al. Inferring subnetworks from perturbed expression profiles. Bioinformatics 17 Suppl. 1 (2001) S215-S224
    • (2001) Bioinformatics , vol.17 , Issue.SUPPL. 1
    • Pe'er, D.1    Regev, A.2
  • 72
    • 10244230983 scopus 로고    scopus 로고
    • Reconstruction of gene networks using Bayesian learning and manipulation experiments
    • Pournara I., and Wernisch L. Reconstruction of gene networks using Bayesian learning and manipulation experiments. Bioinformatics 20 17 (2004) 2934-2942
    • (2004) Bioinformatics , vol.20 , Issue.17 , pp. 2934-2942
    • Pournara, I.1    Wernisch, L.2
  • 73
    • 0036400724 scopus 로고    scopus 로고
    • Dynamics of Boolean networks controlled by biologically meaningful functions
    • Raeymaekers L. Dynamics of Boolean networks controlled by biologically meaningful functions. J. Theor. Biol. 218 3 (2002) 331-341
    • (2002) J. Theor. Biol. , vol.218 , Issue.3 , pp. 331-341
    • Raeymaekers, L.1
  • 74
    • 15944367731 scopus 로고    scopus 로고
    • Reconstructing biological networks using conditional correlation analysis
    • Rice J.J., Tu Y., et al. Reconstructing biological networks using conditional correlation analysis. Bioinformatics 21 6 (2005) 765-773
    • (2005) Bioinformatics , vol.21 , Issue.6 , pp. 765-773
    • Rice, J.J.1    Tu, Y.2
  • 75
    • 68149152274 scopus 로고    scopus 로고
    • Mathematical biology education: Beyond calculus
    • Robeva R., and Laubenbacher R. Mathematical biology education: Beyond calculus. Science 325 5940 (2009) 542-543
    • (2009) Science , vol.325 , Issue.5940 , pp. 542-543
    • Robeva, R.1    Laubenbacher, R.2
  • 76
    • 34548431024 scopus 로고    scopus 로고
    • A logical model provides insights into T cell receptor signaling
    • Saez-Rodriguez J., Simeoni L., et al. A logical model provides insights into T cell receptor signaling. PLoS Comp. Biol. 3 8 (2007) e163
    • (2007) PLoS Comp. Biol. , vol.3 , Issue.8
    • Saez-Rodriguez, J.1    Simeoni, L.2
  • 77
    • 42449164727 scopus 로고    scopus 로고
    • The regulatory network of E. coli metabolism as a Boolean dynamical system exhibits both homeostasis and flexibility of response
    • Samal A., and Jain S. The regulatory network of E. coli metabolism as a Boolean dynamical system exhibits both homeostasis and flexibility of response. BMC Syst. Biol. 2 (2008) 21
    • (2008) BMC Syst. Biol. , vol.2 , pp. 21
    • Samal, A.1    Jain, S.2
  • 78
    • 0035928464 scopus 로고    scopus 로고
    • A logical analysis of the Drosophila gap-gene system
    • Sanchez L., and Thieffry D. A logical analysis of the Drosophila gap-gene system. J. Theor. Biol. 211 (2001) 115-141
    • (2001) J. Theor. Biol. , vol.211 , pp. 115-141
    • Sanchez, L.1    Thieffry, D.2
  • 79
    • 0025768289 scopus 로고
    • Biochemical systems theory: Operational differences among variant representations and their significance
    • Savageau M.A. Biochemical systems theory: Operational differences among variant representations and their significance. J. Theor. Biol. 151 4 (1991) 509
    • (1991) J. Theor. Biol. , vol.151 , Issue.4 , pp. 509
    • Savageau, M.A.1
  • 80
    • 0036184629 scopus 로고    scopus 로고
    • Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks
    • Shmulevich I., Dougherty E.R., et al. Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks. Bioinformatics 18 2 (2002) 261-274
    • (2002) Bioinformatics , vol.18 , Issue.2 , pp. 261-274
    • Shmulevich, I.1    Dougherty, E.R.2
  • 81
    • 0346505356 scopus 로고    scopus 로고
    • Steady-state analysis of genetic regulatory networks modelled by probabilistic Boolean networks
    • Shmulevich I., Gluhovsky I., et al. Steady-state analysis of genetic regulatory networks modelled by probabilistic Boolean networks. Comp. Funct. Genomics 4 6 (2003) 601-608
    • (2003) Comp. Funct. Genomics , vol.4 , Issue.6 , pp. 601-608
    • Shmulevich, I.1    Gluhovsky, I.2
  • 82
    • 0141480040 scopus 로고    scopus 로고
    • The role of certain Post classes of Boolean network models of genetic networks
    • Shmulevich I., Lahdesmaki H., et al. The role of certain Post classes of Boolean network models of genetic networks. Proc. Natl. Acad. Sci. USA 100 19 (2003) 10734-10739
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , Issue.19 , pp. 10734-10739
    • Shmulevich, I.1    Lahdesmaki, H.2
  • 85
    • 10244252785 scopus 로고    scopus 로고
    • A model-based optimization framework for the inference on gene regulatory networks from DNA array data
    • Thomas R., Mehrotra S., et al. A model-based optimization framework for the inference on gene regulatory networks from DNA array data. Bioinformatics 20 17 (2004) 3221-3235
    • (2004) Bioinformatics , vol.20 , Issue.17 , pp. 3221-3235
    • Thomas, R.1    Mehrotra, S.2
  • 86
    • 4944246911 scopus 로고    scopus 로고
    • Enriching for direct regulatory targets in perturbed gene-expression profiles
    • Tringe S., Wagner A., et al. Enriching for direct regulatory targets in perturbed gene-expression profiles. Genome Biol. 5 4 (2004) R29
    • (2004) Genome Biol. , vol.5 , Issue.4
    • Tringe, S.1    Wagner, A.2
  • 88
    • 51149203927 scopus 로고
    • Canalisation of development and the inheritance of acquired characters
    • Waddington C.H. Canalisation of development and the inheritance of acquired characters. Nature 150 (1942) 563-564
    • (1942) Nature , vol.150 , pp. 563-564
    • Waddington, C.H.1
  • 89
    • 0036138322 scopus 로고    scopus 로고
    • How to reconstruct a large genetic network from n gene perturbations in fewer than n(2) easy steps
    • Wagner A. How to reconstruct a large genetic network from n gene perturbations in fewer than n(2) easy steps. Bioinformatics 17 12 (2001) 1183-1197
    • (2001) Bioinformatics , vol.17 , Issue.12 , pp. 1183-1197
    • Wagner, A.1
  • 90
    • 1842607542 scopus 로고    scopus 로고
    • Reconstructing pathways in large genetic networks from genetic perturbations
    • Wagner A. Reconstructing pathways in large genetic networks from genetic perturbations. J. Comput. Biol. 11 1 (2004) 53-60
    • (2004) J. Comput. Biol. , vol.11 , Issue.1 , pp. 53-60
    • Wagner, A.1
  • 91
    • 33749825955 scopus 로고    scopus 로고
    • Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks
    • Werhli A.V., Grzegorczyk M., et al. Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks. Bioinformatics 22 20 (2006) 2523-2531
    • (2006) Bioinformatics , vol.22 , Issue.20 , pp. 2523-2531
    • Werhli, A.V.1    Grzegorczyk, M.2
  • 92
    • 0037197936 scopus 로고    scopus 로고
    • Reverse engineering gene networks using singular value decomposition and robust regression
    • Yeung M.K., Tegner J., et al. Reverse engineering gene networks using singular value decomposition and robust regression. Proc. Natl. Acad. Sci. USA 99 9 (2002) 6163-6168
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , Issue.9 , pp. 6163-6168
    • Yeung, M.K.1    Tegner, J.2
  • 93
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian network inference for generating causal networks from observational biological data
    • Yu J., Smith V.A., et al. Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20 18 (2004) 3594-3603
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3594-3603
    • Yu, J.1    Smith, V.A.2
  • 94
    • 55849100058 scopus 로고    scopus 로고
    • Network model of survival signaling in large granular lymphocyte leukemia
    • Zhang R., Shah M.V., et al. Network model of survival signaling in large granular lymphocyte leukemia. Proc. Natl. Acad. Sci. USA 105 42 (2008) 16308-16313
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , Issue.42 , pp. 16308-16313
    • Zhang, R.1    Shah, M.V.2
  • 95
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
    • Zou M., and Conzen S.D. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21 1 (2005) 71-79
    • (2005) Bioinformatics , vol.21 , Issue.1 , pp. 71-79
    • Zou, M.1    Conzen, S.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.