-
1
-
-
0032616683
-
Identification of genetic networks from a small number of gene expression patterns under the Boolean network model
-
Akutsu T., Miyano S., et al. Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pac. Symp. Biocomput. (1999) 17-28
-
(1999)
Pac. Symp. Biocomput.
, pp. 17-28
-
-
Akutsu, T.1
Miyano, S.2
-
2
-
-
0033642487
-
Algorithms for inferring qualitative models of biological networks
-
Akutsu T., Miyano S., et al. Algorithms for inferring qualitative models of biological networks. Pac. Symp. Biocomput. (2000) 293-304
-
(2000)
Pac. Symp. Biocomput.
, pp. 293-304
-
-
Akutsu, T.1
Miyano, S.2
-
3
-
-
0033737840
-
Inferring qualitative relations in genetic networks and metabolic pathways
-
Akutsu T., Miyano S., et al. Inferring qualitative relations in genetic networks and metabolic pathways. Bioinformatics 16 8 (2000) 727-734
-
(2000)
Bioinformatics
, vol.16
, Issue.8
, pp. 727-734
-
-
Akutsu, T.1
Miyano, S.2
-
4
-
-
0037686112
-
The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster
-
Albert R., and Othmer H.G. The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J. Theor. Biol. 223 1 (2003) 1-18
-
(2003)
J. Theor. Biol.
, vol.223
, Issue.1
, pp. 1-18
-
-
Albert, R.1
Othmer, H.G.2
-
6
-
-
9644284380
-
Inference of signaling and gene regulatory networks by steady-state perturbation experiments: Structure and accuracy
-
Andrec M., Kholodenko B.N., et al. Inference of signaling and gene regulatory networks by steady-state perturbation experiments: Structure and accuracy. J. Theor. Biol. 232 3 (2005) 427
-
(2005)
J. Theor. Biol.
, vol.232
, Issue.3
, pp. 427
-
-
Andrec, M.1
Kholodenko, B.N.2
-
7
-
-
49649117268
-
Critical dynamics in gene regulatory networks: Examples from four kingdoms
-
Balleza E., Alvarez-Buylla E.R., et al. Critical dynamics in gene regulatory networks: Examples from four kingdoms. PLoS One 3 6 (2008) e2456
-
(2008)
PLoS One
, vol.3
, Issue.6
-
-
Balleza, E.1
Alvarez-Buylla, E.R.2
-
8
-
-
33645307955
-
Inference of gene regulatory networks and compound mode of action from time course gene expression profiles
-
Bansal M., Gatta G.D., et al. Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics 22 7 (2006) 815-822
-
(2006)
Bioinformatics
, vol.22
, Issue.7
, pp. 815-822
-
-
Bansal, M.1
Gatta, G.D.2
-
9
-
-
33847055114
-
How to infer gene networks from expression profiles
-
10.1038/msb4100120
-
Bansal M., Belcastro V., et al. How to infer gene networks from expression profiles. Mol. Syst. Biol. 3 (2007) 78 10.1038/msb4100120
-
(2007)
Mol. Syst. Biol.
, vol.3
, pp. 78
-
-
Bansal, M.1
Belcastro, V.2
-
10
-
-
30044433043
-
The global transcriptional regulatory network for metabolism in Escherichia coli exhibits few dominant functional states
-
Barrett C.B., Herring C.D., et al. The global transcriptional regulatory network for metabolism in Escherichia coli exhibits few dominant functional states. Proc. Natl. Acad. Sci. USA 102 52 (2005) 19103-19108
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, Issue.52
, pp. 19103-19108
-
-
Barrett, C.B.1
Herring, C.D.2
-
11
-
-
13844253637
-
A Bayesian approach to reconstructing genetic regulatory networks with hidden factors
-
Beal M.J., Falciani F., et al. A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics 21 3 (2005) 349-356
-
(2005)
Bioinformatics
, vol.21
, Issue.3
, pp. 349-356
-
-
Beal, M.J.1
Falciani, F.2
-
12
-
-
4544246088
-
Mathematical modeling reveals threshold mechanism in CD95-induced apoptosis
-
Bentele M., Lavrik I., et al. Mathematical modeling reveals threshold mechanism in CD95-induced apoptosis. J. Cell Biol. 166 6 (2004) 839-851
-
(2004)
J. Cell Biol.
, vol.166
, Issue.6
, pp. 839-851
-
-
Bentele, M.1
Lavrik, I.2
-
13
-
-
15944361900
-
Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data
-
Bernard A., and Hartemink A. Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data. Pac. Symp. Biocompu. conf. proceedings (2005) pp. 459-470
-
(2005)
Pac. Symp. Biocompu. conf. proceedings
-
-
Bernard, A.1
Hartemink, A.2
-
16
-
-
25844496994
-
Average path length of binary decision diagrams
-
Butler J.T., Tsutomu S., et al. Average path length of binary decision diagrams. IEEE Trans. Comput. 54 9 (2005) 1041-1053
-
(2005)
IEEE Trans. Comput.
, vol.54
, Issue.9
, pp. 1041-1053
-
-
Butler, J.T.1
Tsutomu, S.2
-
17
-
-
0034710924
-
Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks
-
Butte A.J., Tamayo P., et al. Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. PNAS 97 22 (2000) 12182-12186
-
(2000)
PNAS
, vol.97
, Issue.22
, pp. 12182-12186
-
-
Butte, A.J.1
Tamayo, P.2
-
18
-
-
36248953897
-
Comparison of reverse-engineering method using an in silico network
-
Camacho D., vera-Licona P., et al. Comparison of reverse-engineering method using an in silico network. Ann. NY Acad. Sci. 1115 (2007) 73-89
-
(2007)
Ann. NY Acad. Sci.
, vol.1115
, pp. 73-89
-
-
Camacho, D.1
vera-Licona, P.2
-
19
-
-
25444464334
-
Quantitative inference of dynamic regulatory pathways via microarray data
-
Chang W.-C., Li C.-W., et al. Quantitative inference of dynamic regulatory pathways via microarray data. BMC Bioinform. 6 1 (2005) 44
-
(2005)
BMC Bioinform.
, vol.6
, Issue.1
, pp. 44
-
-
Chang, W.-C.1
Li, C.-W.2
-
20
-
-
18844380444
-
Robustness and fragility of Boolean models for genetic regulatory networks
-
Chaves M., Albert R., et al. Robustness and fragility of Boolean models for genetic regulatory networks. J. Theor. Biol. 235 (2005) 431-449
-
(2005)
J. Theor. Biol.
, vol.235
, pp. 431-449
-
-
Chaves, M.1
Albert, R.2
-
21
-
-
33644618250
-
On construction of stochastic genetic networks based on gene expression sequences
-
Ching W.K., Ng M.M., Fung E.S., and Akutsu T. On construction of stochastic genetic networks based on gene expression sequences. Int. J. Neural Syst. 15 4 (2005) 297-310
-
(2005)
Int. J. Neural Syst.
, vol.15
, Issue.4
, pp. 297-310
-
-
Ching, W.K.1
Ng, M.M.2
Fung, E.S.3
Akutsu, T.4
-
22
-
-
45849093636
-
Boolean network model predicts cell cycle sequence of fission yeast
-
Davidich M.I., and Bornholdt S. Boolean network model predicts cell cycle sequence of fission yeast. PLoS One 3 2 (2007) e1672
-
(2007)
PLoS One
, vol.3
, Issue.2
-
-
Davidich, M.I.1
Bornholdt, S.2
-
24
-
-
0036041072
-
Quantifying gene networks with regulatory strengths
-
de la Fuente A., and Mendes P. Quantifying gene networks with regulatory strengths. Mol. Biol. Rep. 29 1-2 (2002) 73-77
-
(2002)
Mol. Biol. Rep.
, vol.29
, Issue.1-2
, pp. 73-77
-
-
de la Fuente, A.1
Mendes, P.2
-
25
-
-
12344321571
-
Discovery of meaningful associations in genomic data using partial correlation coefficients
-
de la Fuente A., Bing N., et al. Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 20 18 (2004) 3565-3574
-
(2004)
Bioinformatics
, vol.20
, Issue.18
, pp. 3565-3574
-
-
de la Fuente, A.1
Bing, N.2
-
26
-
-
22044438132
-
EXAMINE: A computational approach to reconstructing gene regulatory networks
-
Deng X., Geng H., et al. EXAMINE: A computational approach to reconstructing gene regulatory networks. Biosystems 81 2 (2005) 125
-
(2005)
Biosystems
, vol.81
, Issue.2
, pp. 125
-
-
Deng, X.1
Geng, H.2
-
27
-
-
36249016761
-
-
Proceedings of the International Symposium on Symbolic and Algebraic Computation, Assoc Comp Mach, Waterloo, CA
-
Dimitrova E., Jarrah A., et al. A Groebner-fan-based method for biochemical network modeling. Proceedings of the International Symposium on Symbolic and Algebraic Computation (2007), Assoc Comp Mach, Waterloo, CA
-
(2007)
A Groebner-fan-based method for biochemical network modeling
-
-
Dimitrova, E.1
Jarrah, A.2
-
29
-
-
71549156636
-
Parameter estimation for Boolean models of biological networks
-
(in press)
-
Dimitrova E., Garcia-Puente L., et al. Parameter estimation for Boolean models of biological networks. Theor. Comp. Sci. (2009) (in press)
-
(2009)
Theor. Comp. Sci.
-
-
Dimitrova, E.1
Garcia-Puente, L.2
-
30
-
-
33746353952
-
Applying dynamic Bayesian networks to perturbed gene expression data
-
Dojer N., Gambin A., et al. Applying dynamic Bayesian networks to perturbed gene expression data. BMC Bioinform. 7 1 (2006) 249
-
(2006)
BMC Bioinform.
, vol.7
, Issue.1
, pp. 249
-
-
Dojer, N.1
Gambin, A.2
-
31
-
-
33846521053
-
Reconstructing dynamic regulatory maps
-
Ernst J., Vainas O., et al. Reconstructing dynamic regulatory maps. Mol. Syst. Biol. 3 (2007) 74
-
(2007)
Mol. Syst. Biol.
, vol.3
, pp. 74
-
-
Ernst, J.1
Vainas, O.2
-
32
-
-
16644389406
-
A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles
-
Espinosa-Soto C., Padilla-Longoria P., et al. A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. Plant Cell 16 11 (2004) 1923-1939
-
(2004)
Plant Cell
, vol.16
, Issue.11
, pp. 1923-1939
-
-
Espinosa-Soto, C.1
Padilla-Longoria, P.2
-
33
-
-
33747874092
-
Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle
-
Faure A., Naldi A., et al. Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 22 14 (2006) 124-131
-
(2006)
Bioinformatics
, vol.22
, Issue.14
, pp. 124-131
-
-
Faure, A.1
Naldi, A.2
-
34
-
-
0842288337
-
Inferring cellular networks using probabilistic graphical models
-
Friedman N. Inferring cellular networks using probabilistic graphical models. Science 303 5659 (2004) 799-805
-
(2004)
Science
, vol.303
, Issue.5659
, pp. 799-805
-
-
Friedman, N.1
-
35
-
-
0033707946
-
Using Bayesian networks to analyze expression data
-
Friedman N., Linial M., et al. Using Bayesian networks to analyze expression data. J. Comput. Biol. 7 3-4 (2000) 601-620
-
(2000)
J. Comput. Biol.
, vol.7
, Issue.3-4
, pp. 601-620
-
-
Friedman, N.1
Linial, M.2
-
36
-
-
25444510601
-
Iterative approach to model identification of biological networks
-
Gadkar K., Gunawan R., et al. Iterative approach to model identification of biological networks. BMC Bioinform. 6 1 (2005) 155
-
(2005)
BMC Bioinform.
, vol.6
, Issue.1
, pp. 155
-
-
Gadkar, K.1
Gunawan, R.2
-
37
-
-
0038048325
-
Inferring genetic networks and identifying compound mode of action via expression profiling
-
Gardner T.S., di Bernardo D., et al. Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301 5629 (2003) 102-105
-
(2003)
Science
, vol.301
, Issue.5629
, pp. 102-105
-
-
Gardner, T.S.1
di Bernardo, D.2
-
38
-
-
3242882981
-
Chain functions and scoring functions in genetic networks
-
Gat-Viks I., and Shamir R. Chain functions and scoring functions in genetic networks. Bioinformatics 19 (2003) 108-117
-
(2003)
Bioinformatics
, vol.19
, pp. 108-117
-
-
Gat-Viks, I.1
Shamir, R.2
-
39
-
-
49549099084
-
Logical modelling of the role of the Hh pathway in the patterning of the Drosophila wing disc
-
Gonzalez A., Chaouiya C., et al. Logical modelling of the role of the Hh pathway in the patterning of the Drosophila wing disc. Bioinformatics 24 234-240 (2008) 16
-
(2008)
Bioinformatics
, vol.24
, Issue.234-240
, pp. 16
-
-
Gonzalez, A.1
Chaouiya, C.2
-
40
-
-
33845877466
-
Boolean network analysis of a neurotransmitter signaling pathway
-
Gupta S., Bisht S.S., et al. Boolean network analysis of a neurotransmitter signaling pathway. J. Theor. Biol. 244 3 (2007) 463-469
-
(2007)
J. Theor. Biol.
, vol.244
, Issue.3
, pp. 463-469
-
-
Gupta, S.1
Bisht, S.S.2
-
41
-
-
85040473565
-
A model of transcriptional regulatory networks based on biases in the observed regulation rules
-
Harris S.E., Sawhill B.K., et al. A model of transcriptional regulatory networks based on biases in the observed regulation rules. Complex Syst. 7 4 (2002) 23-40
-
(2002)
Complex Syst.
, vol.7
, Issue.4
, pp. 23-40
-
-
Harris, S.E.1
Sawhill, B.K.2
-
42
-
-
0036522639
-
Bayesian methods for elucidating genetic regulatory networks
-
Hartemink A., Gifford D., et al. Bayesian methods for elucidating genetic regulatory networks. IEEE Intel. Syst. 17 (2002) 37-43
-
(2002)
IEEE Intel. Syst.
, vol.17
, pp. 37-43
-
-
Hartemink, A.1
Gifford, D.2
-
43
-
-
33745178476
-
Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae
-
Herrgard M.J., Lee B.S., et al. Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome Res. 16 (2006) 627-635
-
(2006)
Genome Res.
, vol.16
, pp. 627-635
-
-
Herrgard, M.J.1
Lee, B.S.2
-
44
-
-
0037716676
-
Building with a scaffold: Emerging strategies for high- to low-level cellular modeling
-
Ideker T.E., and Lauffenburger D. Building with a scaffold: Emerging strategies for high- to low-level cellular modeling. Trends Biotechnol. 21 6 (2003) 256-262
-
(2003)
Trends Biotechnol.
, vol.21
, Issue.6
, pp. 256-262
-
-
Ideker, T.E.1
Lauffenburger, D.2
-
45
-
-
0033642067
-
Discovery of regulatory interactions through perturbation: Inference and experimental design
-
Ideker T.E., Thorsson V., et al. Discovery of regulatory interactions through perturbation: Inference and experimental design. Pac. Symp. Biocomput. 5 (2000) 305-316
-
(2000)
Pac. Symp. Biocomput.
, vol.5
, pp. 305-316
-
-
Ideker, T.E.1
Thorsson, V.2
-
46
-
-
0000801240
-
Discovering regulatory and signalling circuits in molecular interaction networks
-
Ideker T.E., Ozier O., et al. Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18 Suppl. 1 (2002) S233-S240
-
(2002)
Bioinformatics
, vol.18
, Issue.SUPPL. 1
-
-
Ideker, T.E.1
Ozier, O.2
-
47
-
-
34548036973
-
Nested canalyzing, unate cascade, and polynomial functions
-
Jarrah A., Raposa B., et al. Nested canalyzing, unate cascade, and polynomial functions. Physica D 233 2 (2007) 167-174
-
(2007)
Physica D
, vol.233
, Issue.2
, pp. 167-174
-
-
Jarrah, A.1
Raposa, B.2
-
49
-
-
0014489272
-
Metabolic stability and epigenesis in randomly constructed genetic nets
-
Kauffman S.A. Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22 3 (1969) 437-467
-
(1969)
J. Theor. Biol.
, vol.22
, Issue.3
, pp. 437-467
-
-
Kauffman, S.A.1
-
50
-
-
0345598902
-
Random Boolean network models and the yeast transcriptional network
-
Kauffman S.A., Peterson C., et al. Random Boolean network models and the yeast transcriptional network. Proc. Natl. Acad. Sci. USA 100 25 (2003) 14796-14799
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, Issue.25
, pp. 14796-14799
-
-
Kauffman, S.A.1
Peterson, C.2
-
51
-
-
10344259662
-
Genetic networks with canalyzing Boolean rules are always stable
-
Kauffman S.A., Peterson C., et al. Genetic networks with canalyzing Boolean rules are always stable. Proc. Natl. Acad. Sci. USA 101 49 (2004) 17102-17107
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, Issue.49
, pp. 17102-17107
-
-
Kauffman, S.A.1
Peterson, C.2
-
52
-
-
2942676743
-
Metabolomics and systems biology: Making sense of the soup
-
Kell D.B. Metabolomics and systems biology: Making sense of the soup. Curr. Opin. Microbiol. 7 3 (2004) 296-307
-
(2004)
Curr. Opin. Microbiol.
, vol.7
, Issue.3
, pp. 296-307
-
-
Kell, D.B.1
-
53
-
-
33846909542
-
Least-squares methods for identifying biochemical regulatory networks from noisy measurements
-
Kim J., Bates D., et al. Least-squares methods for identifying biochemical regulatory networks from noisy measurements. BMC Bioinform. 8 1 (2007) 8
-
(2007)
BMC Bioinform.
, vol.8
, Issue.1
, pp. 8
-
-
Kim, J.1
Bates, D.2
-
54
-
-
20144387371
-
Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm
-
Kimura S., Ide K., et al. Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm. Bioinformatics 21 7 (2005) 1154-1163
-
(2005)
Bioinformatics
, vol.21
, Issue.7
, pp. 1154-1163
-
-
Kimura, S.1
Ide, K.2
-
55
-
-
4644301730
-
A benchmark for methods in reverse engineering and model discrimination: Problem formulation and solutions
-
Kremling A., Fischer S., et al. A benchmark for methods in reverse engineering and model discrimination: Problem formulation and solutions. Genome Res. 14 9 (2004) 1773-1785
-
(2004)
Genome Res.
, vol.14
, Issue.9
, pp. 1773-1785
-
-
Kremling, A.1
Fischer, S.2
-
56
-
-
3042799574
-
A computational algebra approach to the reverse engineering of gene regulatory networks
-
Laubenbacher R., and Stigler B. A computational algebra approach to the reverse engineering of gene regulatory networks. J. Theor. Biol. 229 (2004) 523-537
-
(2004)
J. Theor. Biol.
, vol.229
, pp. 523-537
-
-
Laubenbacher, R.1
Stigler, B.2
-
58
-
-
1842687878
-
The yeast cell-cycle network is robustly designed
-
Li F., Long T., et al. The yeast cell-cycle network is robustly designed. Proc. Natl. Acad. Sci. USA 101 14 (2004) 4781-4786
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, Issue.14
, pp. 4781-4786
-
-
Li, F.1
Long, T.2
-
59
-
-
33750270802
-
Predicting essential components of signal transduction networks: A dynamic model of guard cell abscisic acid signaling
-
Li S., Assman S.M., et al. Predicting essential components of signal transduction networks: A dynamic model of guard cell abscisic acid signaling. PLoS Biol. 4 10 (2006) e312
-
(2006)
PLoS Biol.
, vol.4
, Issue.10
-
-
Li, S.1
Assman, S.M.2
-
60
-
-
33644649220
-
Discovery of time-delayed gene regulatory networks based on temporal gene expression profiling
-
Li X., Rao S., et al. Discovery of time-delayed gene regulatory networks based on temporal gene expression profiling. BMC Bioinform. 7 1 (2006) 26
-
(2006)
BMC Bioinform.
, vol.7
, Issue.1
, pp. 26
-
-
Li, X.1
Rao, S.2
-
61
-
-
0031616241
-
REVEAL, a general reverse engineering algorithm for inference of genetic network architectures
-
Liang S., Fuhrman S., et al. REVEAL, a general reverse engineering algorithm for inference of genetic network architectures. Pac. Symp Biocomput. 3 (1998) 18-29
-
(1998)
Pac. Symp Biocomput.
, vol.3
, pp. 18-29
-
-
Liang, S.1
Fuhrman, S.2
-
62
-
-
0029027081
-
Genetic networks
-
Loomis W.F., and Sternberg P.W. Genetic networks. Science 269 5224 (1995) 649
-
(1995)
Science
, vol.269
, Issue.5224
, pp. 649
-
-
Loomis, W.F.1
Sternberg, P.W.2
-
63
-
-
33947305781
-
ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
-
Margolin A.A., Nemenman I., et al. ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform. 7 Suppl. 1 (2006) S7
-
(2006)
BMC Bioinform.
, vol.7
, Issue.SUPPL. 1
-
-
Margolin, A.A.1
Nemenman, I.2
-
64
-
-
33748511015
-
An automated procedure for the extraction of metabolic network information from time series data
-
Marino S., and Voit E. An automated procedure for the extraction of metabolic network information from time series data. J. Bioinform. Comp. Biol. 4 3 (2006) 665-691
-
(2006)
J. Bioinform. Comp. Biol.
, vol.4
, Issue.3
, pp. 665-691
-
-
Marino, S.1
Voit, E.2
-
65
-
-
34248572623
-
Boolean dynamics of genetic regulatory networks inferred from microarray time series data
-
Martin S., Zhang Z., et al. Boolean dynamics of genetic regulatory networks inferred from microarray time series data. Bioinformatics 23 7 (2007) 866-874
-
(2007)
Bioinformatics
, vol.23
, Issue.7
, pp. 866-874
-
-
Martin, S.1
Zhang, Z.2
-
66
-
-
6044247613
-
A Boolean algorithm for reconstructing the structure of regulatory networks
-
Mehra S., Hu W.-S., et al. A Boolean algorithm for reconstructing the structure of regulatory networks. Metab. Eng. 6 4 (2004) 326
-
(2004)
Metab. Eng.
, vol.6
, Issue.4
, pp. 326
-
-
Mehra, S.1
Hu, W.-S.2
-
67
-
-
33646345600
-
A network model for the control of the differentiation process in Th cells
-
Mendoza L. A network model for the control of the differentiation process in Th cells. Biosystems 84 (2006) 101-114
-
(2006)
Biosystems
, vol.84
, pp. 101-114
-
-
Mendoza, L.1
-
68
-
-
0034616621
-
Genetic regulation of root hair development in Arabidopsis thaliana: A network model
-
Mendoza L., and Alvarez-Buylla E.R. Genetic regulation of root hair development in Arabidopsis thaliana: A network model. J. Theor. Biol. 204 (2000) 311-326
-
(2000)
J. Theor. Biol.
, vol.204
, pp. 311-326
-
-
Mendoza, L.1
Alvarez-Buylla, E.R.2
-
69
-
-
27544494569
-
Estimating gene regulatory networks and protein-protein interactions of Saccharomyces cerevisiae from multiple genome-wide data
-
Nariai N., Tamada Y., et al. Estimating gene regulatory networks and protein-protein interactions of Saccharomyces cerevisiae from multiple genome-wide data. Bioinformatics 21 Suppl. 2 (2005) ii206-ii212
-
(2005)
Bioinformatics
, vol.21
, Issue.SUPPL. 2
-
-
Nariai, N.1
Tamada, Y.2
-
70
-
-
34447105436
-
Boolean networks with biologically relevant rules show ordered behavior
-
Nikolayewaa S., Friedela M., et al. Boolean networks with biologically relevant rules show ordered behavior. Biosystems 90 1 (2007) 40-47
-
(2007)
Biosystems
, vol.90
, Issue.1
, pp. 40-47
-
-
Nikolayewaa, S.1
Friedela, M.2
-
71
-
-
18144442687
-
Inferring subnetworks from perturbed expression profiles
-
Pe'er D., Regev A., et al. Inferring subnetworks from perturbed expression profiles. Bioinformatics 17 Suppl. 1 (2001) S215-S224
-
(2001)
Bioinformatics
, vol.17
, Issue.SUPPL. 1
-
-
Pe'er, D.1
Regev, A.2
-
72
-
-
10244230983
-
Reconstruction of gene networks using Bayesian learning and manipulation experiments
-
Pournara I., and Wernisch L. Reconstruction of gene networks using Bayesian learning and manipulation experiments. Bioinformatics 20 17 (2004) 2934-2942
-
(2004)
Bioinformatics
, vol.20
, Issue.17
, pp. 2934-2942
-
-
Pournara, I.1
Wernisch, L.2
-
73
-
-
0036400724
-
Dynamics of Boolean networks controlled by biologically meaningful functions
-
Raeymaekers L. Dynamics of Boolean networks controlled by biologically meaningful functions. J. Theor. Biol. 218 3 (2002) 331-341
-
(2002)
J. Theor. Biol.
, vol.218
, Issue.3
, pp. 331-341
-
-
Raeymaekers, L.1
-
74
-
-
15944367731
-
Reconstructing biological networks using conditional correlation analysis
-
Rice J.J., Tu Y., et al. Reconstructing biological networks using conditional correlation analysis. Bioinformatics 21 6 (2005) 765-773
-
(2005)
Bioinformatics
, vol.21
, Issue.6
, pp. 765-773
-
-
Rice, J.J.1
Tu, Y.2
-
75
-
-
68149152274
-
Mathematical biology education: Beyond calculus
-
Robeva R., and Laubenbacher R. Mathematical biology education: Beyond calculus. Science 325 5940 (2009) 542-543
-
(2009)
Science
, vol.325
, Issue.5940
, pp. 542-543
-
-
Robeva, R.1
Laubenbacher, R.2
-
76
-
-
34548431024
-
A logical model provides insights into T cell receptor signaling
-
Saez-Rodriguez J., Simeoni L., et al. A logical model provides insights into T cell receptor signaling. PLoS Comp. Biol. 3 8 (2007) e163
-
(2007)
PLoS Comp. Biol.
, vol.3
, Issue.8
-
-
Saez-Rodriguez, J.1
Simeoni, L.2
-
77
-
-
42449164727
-
The regulatory network of E. coli metabolism as a Boolean dynamical system exhibits both homeostasis and flexibility of response
-
Samal A., and Jain S. The regulatory network of E. coli metabolism as a Boolean dynamical system exhibits both homeostasis and flexibility of response. BMC Syst. Biol. 2 (2008) 21
-
(2008)
BMC Syst. Biol.
, vol.2
, pp. 21
-
-
Samal, A.1
Jain, S.2
-
78
-
-
0035928464
-
A logical analysis of the Drosophila gap-gene system
-
Sanchez L., and Thieffry D. A logical analysis of the Drosophila gap-gene system. J. Theor. Biol. 211 (2001) 115-141
-
(2001)
J. Theor. Biol.
, vol.211
, pp. 115-141
-
-
Sanchez, L.1
Thieffry, D.2
-
79
-
-
0025768289
-
Biochemical systems theory: Operational differences among variant representations and their significance
-
Savageau M.A. Biochemical systems theory: Operational differences among variant representations and their significance. J. Theor. Biol. 151 4 (1991) 509
-
(1991)
J. Theor. Biol.
, vol.151
, Issue.4
, pp. 509
-
-
Savageau, M.A.1
-
80
-
-
0036184629
-
Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks
-
Shmulevich I., Dougherty E.R., et al. Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks. Bioinformatics 18 2 (2002) 261-274
-
(2002)
Bioinformatics
, vol.18
, Issue.2
, pp. 261-274
-
-
Shmulevich, I.1
Dougherty, E.R.2
-
81
-
-
0346505356
-
Steady-state analysis of genetic regulatory networks modelled by probabilistic Boolean networks
-
Shmulevich I., Gluhovsky I., et al. Steady-state analysis of genetic regulatory networks modelled by probabilistic Boolean networks. Comp. Funct. Genomics 4 6 (2003) 601-608
-
(2003)
Comp. Funct. Genomics
, vol.4
, Issue.6
, pp. 601-608
-
-
Shmulevich, I.1
Gluhovsky, I.2
-
82
-
-
0141480040
-
The role of certain Post classes of Boolean network models of genetic networks
-
Shmulevich I., Lahdesmaki H., et al. The role of certain Post classes of Boolean network models of genetic networks. Proc. Natl. Acad. Sci. USA 100 19 (2003) 10734-10739
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, Issue.19
, pp. 10734-10739
-
-
Shmulevich, I.1
Lahdesmaki, H.2
-
85
-
-
10244252785
-
A model-based optimization framework for the inference on gene regulatory networks from DNA array data
-
Thomas R., Mehrotra S., et al. A model-based optimization framework for the inference on gene regulatory networks from DNA array data. Bioinformatics 20 17 (2004) 3221-3235
-
(2004)
Bioinformatics
, vol.20
, Issue.17
, pp. 3221-3235
-
-
Thomas, R.1
Mehrotra, S.2
-
86
-
-
4944246911
-
Enriching for direct regulatory targets in perturbed gene-expression profiles
-
Tringe S., Wagner A., et al. Enriching for direct regulatory targets in perturbed gene-expression profiles. Genome Biol. 5 4 (2004) R29
-
(2004)
Genome Biol.
, vol.5
, Issue.4
-
-
Tringe, S.1
Wagner, A.2
-
88
-
-
51149203927
-
Canalisation of development and the inheritance of acquired characters
-
Waddington C.H. Canalisation of development and the inheritance of acquired characters. Nature 150 (1942) 563-564
-
(1942)
Nature
, vol.150
, pp. 563-564
-
-
Waddington, C.H.1
-
89
-
-
0036138322
-
How to reconstruct a large genetic network from n gene perturbations in fewer than n(2) easy steps
-
Wagner A. How to reconstruct a large genetic network from n gene perturbations in fewer than n(2) easy steps. Bioinformatics 17 12 (2001) 1183-1197
-
(2001)
Bioinformatics
, vol.17
, Issue.12
, pp. 1183-1197
-
-
Wagner, A.1
-
90
-
-
1842607542
-
Reconstructing pathways in large genetic networks from genetic perturbations
-
Wagner A. Reconstructing pathways in large genetic networks from genetic perturbations. J. Comput. Biol. 11 1 (2004) 53-60
-
(2004)
J. Comput. Biol.
, vol.11
, Issue.1
, pp. 53-60
-
-
Wagner, A.1
-
91
-
-
33749825955
-
Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks
-
Werhli A.V., Grzegorczyk M., et al. Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks. Bioinformatics 22 20 (2006) 2523-2531
-
(2006)
Bioinformatics
, vol.22
, Issue.20
, pp. 2523-2531
-
-
Werhli, A.V.1
Grzegorczyk, M.2
-
92
-
-
0037197936
-
Reverse engineering gene networks using singular value decomposition and robust regression
-
Yeung M.K., Tegner J., et al. Reverse engineering gene networks using singular value decomposition and robust regression. Proc. Natl. Acad. Sci. USA 99 9 (2002) 6163-6168
-
(2002)
Proc. Natl. Acad. Sci. USA
, vol.99
, Issue.9
, pp. 6163-6168
-
-
Yeung, M.K.1
Tegner, J.2
-
93
-
-
12344259602
-
Advances to Bayesian network inference for generating causal networks from observational biological data
-
Yu J., Smith V.A., et al. Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20 18 (2004) 3594-3603
-
(2004)
Bioinformatics
, vol.20
, Issue.18
, pp. 3594-3603
-
-
Yu, J.1
Smith, V.A.2
-
94
-
-
55849100058
-
Network model of survival signaling in large granular lymphocyte leukemia
-
Zhang R., Shah M.V., et al. Network model of survival signaling in large granular lymphocyte leukemia. Proc. Natl. Acad. Sci. USA 105 42 (2008) 16308-16313
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, Issue.42
, pp. 16308-16313
-
-
Zhang, R.1
Shah, M.V.2
-
95
-
-
12744261506
-
A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
-
Zou M., and Conzen S.D. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21 1 (2005) 71-79
-
(2005)
Bioinformatics
, vol.21
, Issue.1
, pp. 71-79
-
-
Zou, M.1
Conzen, S.D.2
|