-
1
-
-
0036789922
-
Untangling the wires: a strategy to trace functional interactions in signaling and gene networks
-
Kholodenko B.N., Kiyatkin A., Bruggeman F.J., Sontag E., Westerhoff H.V., and Hoek J.B. Untangling the wires: a strategy to trace functional interactions in signaling and gene networks. Proc Natl Acad Sci 99 (2002) 12841-12846
-
(2002)
Proc Natl Acad Sci
, vol.99
, pp. 12841-12846
-
-
Kholodenko, B.N.1
Kiyatkin, A.2
Bruggeman, F.J.3
Sontag, E.4
Westerhoff, H.V.5
Hoek, J.B.6
-
2
-
-
7744225947
-
Transcriptional networks: reverse-engineering gene regulation on a global scale
-
Chua G., Robinson M.D., Morris Q., and Hughes T.R. Transcriptional networks: reverse-engineering gene regulation on a global scale. Curr Opin Microbiol 7 (2004) 638-646
-
(2004)
Curr Opin Microbiol
, vol.7
, pp. 638-646
-
-
Chua, G.1
Robinson, M.D.2
Morris, Q.3
Hughes, T.R.4
-
3
-
-
0037208166
-
TRANSFAC: transcriptional regulation, from patterns to profiles
-
Matys V., Fricke E., Geffers R., Gossling E., Haubrock M., Hehl R., et al. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 31 (2003) 374-378
-
(2003)
Nucleic Acids Res
, vol.31
, pp. 374-378
-
-
Matys, V.1
Fricke, E.2
Geffers, R.3
Gossling, E.4
Haubrock, M.5
Hehl, R.6
-
4
-
-
61349180117
-
Gene regulatory network inference: data integration in dynamic models-a review
-
Hecker M., Lambeck S., Toepfer S., van Someren E., and Guthke R. Gene regulatory network inference: data integration in dynamic models-a review. BioSystems 96 (2009) 86-103
-
(2009)
BioSystems
, vol.96
, pp. 86-103
-
-
Hecker, M.1
Lambeck, S.2
Toepfer, S.3
van Someren, E.4
Guthke, R.5
-
6
-
-
0036649020
-
Large-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clusters
-
Wu L.F., Hughes T.R., Davierwala A.P., Robinson M.D., Stoughton R., and Altschuler S.J. Large-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clusters. Nat Genet 31 (2002) 255-265
-
(2002)
Nat Genet
, vol.31
, pp. 255-265
-
-
Wu, L.F.1
Hughes, T.R.2
Davierwala, A.P.3
Robinson, M.D.4
Stoughton, R.5
Altschuler, S.J.6
-
7
-
-
0036699526
-
Revealing modular organization in the yeast transcriptional network
-
Ihmels J., Friedlander G., Bergmann S., Sarig O., Ziv Y., and Barkai N. Revealing modular organization in the yeast transcriptional network. Nat Genet 31 (2002) 370-377
-
(2002)
Nat Genet
, vol.31
, pp. 370-377
-
-
Ihmels, J.1
Friedlander, G.2
Bergmann, S.3
Sarig, O.4
Ziv, Y.5
Barkai, N.6
-
8
-
-
0031787969
-
Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation
-
Roth F.P., Hughes J.D., Estep P.W., and Church G.M. Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat Biotechnol 16 (1998) 939-945
-
(1998)
Nat Biotechnol
, vol.16
, pp. 939-945
-
-
Roth, F.P.1
Hughes, J.D.2
Estep, P.W.3
Church, G.M.4
-
9
-
-
0033028596
-
Systematic determination of genetic network architecture
-
Tavazoie S., Hughes J.D., Campbell M.J., Cho R.J., and Church G.M. Systematic determination of genetic network architecture. Nat Genet 22 (1999) 281-285
-
(1999)
Nat Genet
, vol.22
, pp. 281-285
-
-
Tavazoie, S.1
Hughes, J.D.2
Campbell, M.J.3
Cho, R.J.4
Church, G.M.5
-
10
-
-
0034785443
-
Identifying regulatory networks by combinatorial analysis of promoter elements
-
Pilpel Y., Sudarsanam P., and Church G.M. Identifying regulatory networks by combinatorial analysis of promoter elements. Nat Genet 29 (2001) 153-159
-
(2001)
Nat Genet
, vol.29
, pp. 153-159
-
-
Pilpel, Y.1
Sudarsanam, P.2
Church, G.M.3
-
12
-
-
0037941585
-
Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data
-
Segal E., Shapira M., Regev A., Pe'er D., Botstein D., Koller D., et al. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 34 (2003) 166-176
-
(2003)
Nat Genet
, vol.34
, pp. 166-176
-
-
Segal, E.1
Shapira, M.2
Regev, A.3
Pe'er, D.4
Botstein, D.5
Koller, D.6
-
13
-
-
0036578795
-
Network motifs in the transcriptional regulation network of Escherichia coli
-
Shen-Orr S.S., Milo R., Mangan S., and Alon U. Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31 (2002) 64-68
-
(2002)
Nat Genet
, vol.31
, pp. 64-68
-
-
Shen-Orr, S.S.1
Milo, R.2
Mangan, S.3
Alon, U.4
-
14
-
-
0037174671
-
Transcriptional regulatory networks in Saccharomyces cerevisiae
-
Lee T.I., Rinaldi N.J., Robert F., Odom D.T., Bar-Joseph Z., Gerber G.K., et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298 (2002) 799-804
-
(2002)
Science
, vol.298
, pp. 799-804
-
-
Lee, T.I.1
Rinaldi, N.J.2
Robert, F.3
Odom, D.T.4
Bar-Joseph, Z.5
Gerber, G.K.6
-
15
-
-
0037174670
-
Network motifs: simple building blocks of complex networks
-
Milo R., Shen-Orr S.S., Itzkovitz S., Kashtan N., Chklovskii D., and Alon U. Network motifs: simple building blocks of complex networks. Science 298 (2002) 824-827
-
(2002)
Science
, vol.298
, pp. 824-827
-
-
Milo, R.1
Shen-Orr, S.S.2
Itzkovitz, S.3
Kashtan, N.4
Chklovskii, D.5
Alon, U.6
-
16
-
-
34147188925
-
In vivo demonstration of FNR dimers in response to lower O2 availability
-
Jervis A.A., and Green J. In vivo demonstration of FNR dimers in response to lower O2 availability. J Bacteriol 189 (2007) 2930-2932
-
(2007)
J Bacteriol
, vol.189
, pp. 2930-2932
-
-
Jervis, A.A.1
Green, J.2
-
17
-
-
27644466832
-
Combining sequence and time series expression data to learn transcriptional modules
-
Kundaje A., Middendorf M., Gao F., Wiggins C., and Leslie C. Combining sequence and time series expression data to learn transcriptional modules. IEEE/ACM Trans Comput Biol Bioinform 2 (2005) 194-202
-
(2005)
IEEE/ACM Trans Comput Biol Bioinform
, vol.2
, pp. 194-202
-
-
Kundaje, A.1
Middendorf, M.2
Gao, F.3
Wiggins, C.4
Leslie, C.5
-
18
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm with discussion
-
Dempster A.P., Laird N.M., and Rubin D.B. Maximum likelihood from incomplete data via the EM algorithm with discussion. R J Stat Soc Ser B 39 (1977) 1-38
-
(1977)
R J Stat Soc Ser B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
19
-
-
0035135420
-
Regulatory element detection using correlation with expression
-
Bussemaker H.J., Li H., and Siggia E.D. Regulatory element detection using correlation with expression. Nat Genet 27 (2001) 167-171
-
(2001)
Nat Genet
, vol.27
, pp. 167-171
-
-
Bussemaker, H.J.1
Li, H.2
Siggia, E.D.3
-
20
-
-
63549148608
-
Transcription factor binding site prediction with multivariate gene expression data
-
Zhang N.R., Wildermuth M.C., and Speed T.P. Transcription factor binding site prediction with multivariate gene expression data. Ann Appl Stat 2 (2008) 332-365
-
(2008)
Ann Appl Stat
, vol.2
, pp. 332-365
-
-
Zhang, N.R.1
Wildermuth, M.C.2
Speed, T.P.3
-
21
-
-
34547630151
-
ChIP-seq: welcome to the new frontier
-
Mardis E.R. ChIP-seq: welcome to the new frontier. Nat Methods 4 (2008) 613-614
-
(2008)
Nat Methods
, vol.4
, pp. 613-614
-
-
Mardis, E.R.1
-
22
-
-
33646510364
-
Genome-wide analysis of protein-DNA interactions
-
Kim T.H., and Ren B. Genome-wide analysis of protein-DNA interactions. Ann Rev Genom Hum Genet 7 (2006) 81-102
-
(2006)
Ann Rev Genom Hum Genet
, vol.7
, pp. 81-102
-
-
Kim, T.H.1
Ren, B.2
-
23
-
-
10744226222
-
Computational discovery of gene modules and regulatory networks
-
Bar-Joseph Z., Gerber G.K., Lee T.I., Rinaldi N.J., Yoo J.Y., Robert F., et al. Computational discovery of gene modules and regulatory networks. Nat Biotechnol 21 (2003) 1337-1342
-
(2003)
Nat Biotechnol
, vol.21
, pp. 1337-1342
-
-
Bar-Joseph, Z.1
Gerber, G.K.2
Lee, T.I.3
Rinaldi, N.J.4
Yoo, J.Y.5
Robert, F.6
-
24
-
-
33745128746
-
Inferring transcriptional modules from ChIP-chip, motif and microarray data
-
Lemmens K., Dhollander T., De Bie T., Monsieurs P., Engelen K., Smets B., et al. Inferring transcriptional modules from ChIP-chip, motif and microarray data. Genome Biol 7 (2006) R37
-
(2006)
Genome Biol
, vol.7
-
-
Lemmens, K.1
Dhollander, T.2
De Bie, T.3
Monsieurs, P.4
Engelen, K.5
Smets, B.6
-
25
-
-
34848855728
-
Bayesian hierarchical model for transcriptional module discovery by jointly modeling gene expression and ChIP-chip data
-
Liu X., Jessen W.J., Sivaganesan S., Aronow B.J., and Medvedovic M. Bayesian hierarchical model for transcriptional module discovery by jointly modeling gene expression and ChIP-chip data. BMC Bioinform 8 (2007) 283
-
(2007)
BMC Bioinform
, vol.8
, pp. 283
-
-
Liu, X.1
Jessen, W.J.2
Sivaganesan, S.3
Aronow, B.J.4
Medvedovic, M.5
-
26
-
-
77950032550
-
Markov chain sampling methods for Dirichlet process mixture models
-
Neal R.M. Markov chain sampling methods for Dirichlet process mixture models. J Comp Graphical Stat 9 (2000) 249-265
-
(2000)
J Comp Graphical Stat
, vol.9
, pp. 249-265
-
-
Neal, R.M.1
-
27
-
-
0000737599
-
-
Solla S.A., Leen T.K., and Muller K.-R. (Eds), Advances in Neural Information Processing Systems, MIT Press
-
Rasmussen C.E. In: Solla S.A., Leen T.K., and Muller K.-R. (Eds). The Infinite Gaussian Mixture Model vol. 12 (2000), Advances in Neural Information Processing Systems, MIT Press 554-560
-
(2000)
The Infinite Gaussian Mixture Model
, vol.12
, pp. 554-560
-
-
Rasmussen, C.E.1
-
28
-
-
70349310142
-
A Bayesian approach to modelling uncertainty in gene expression clusters
-
Stockholm, Sweden
-
Wild D.L., Rasmussen C.E., Ghahramani Z., Cregg J., de la Cruz B.J., Kan C.-C., et al. A Bayesian approach to modelling uncertainty in gene expression clusters. 3rd international conference on systems biology. Stockholm, Sweden (2002)
-
(2002)
3rd international conference on systems biology
-
-
Wild, D.L.1
Rasmussen, C.E.2
Ghahramani, Z.3
Cregg, J.4
de la Cruz, B.J.5
Kan, C.-C.6
-
29
-
-
0036739286
-
Bayesian infinite mixture model based clustering of gene expression profiles
-
Medvedovic M., and Sivaganesan S. Bayesian infinite mixture model based clustering of gene expression profiles. Bioinformatics 18 (2002) 1194-1206
-
(2002)
Bioinformatics
, vol.18
, pp. 1194-1206
-
-
Medvedovic, M.1
Sivaganesan, S.2
-
30
-
-
3042686005
-
Bayesian mixture model based clustering of replicated microarray data
-
Medvedovic M., Yeung K.Y., and Bumgarner R.E. Bayesian mixture model based clustering of replicated microarray data. Bioinformatics 20 (2004) 1222-1232
-
(2004)
Bioinformatics
, vol.20
, pp. 1222-1232
-
-
Medvedovic, M.1
Yeung, K.Y.2
Bumgarner, R.E.3
-
31
-
-
33747875436
-
Context-specific infinite mixtures for clustering gene expression profiles across diverse microarray dataset
-
Liu X., Sivaganesan S., Yeung K.Y., Guo J., Bumgarner R.E., and Medvedovic M. Context-specific infinite mixtures for clustering gene expression profiles across diverse microarray dataset. Bioinformatics 22 (2006) 1737-1744
-
(2006)
Bioinformatics
, vol.22
, pp. 1737-1744
-
-
Liu, X.1
Sivaganesan, S.2
Yeung, K.Y.3
Guo, J.4
Bumgarner, R.E.5
Medvedovic, M.6
-
32
-
-
33845756481
-
Model-based clustering for expression data via a Dirichlet process mixture model
-
Do K.-A., Müller P., and Vannucci M. (Eds), Cambridge University Press, Cambridge
-
Dahl D.B. Model-based clustering for expression data via a Dirichlet process mixture model. In: Do K.-A., Müller P., and Vannucci M. (Eds). Bayesian inference for gene expression and proteomics (2006), Cambridge University Press, Cambridge
-
(2006)
Bayesian inference for gene expression and proteomics
-
-
Dahl, D.B.1
-
33
-
-
33747830882
-
Clustering microarray gene expression data using weighted chinese restaurant process
-
Qin Z.S. Clustering microarray gene expression data using weighted chinese restaurant process. Bioinformatics 22 (2006) 1988-1997
-
(2006)
Bioinformatics
, vol.22
, pp. 1988-1997
-
-
Qin, Z.S.1
-
37
-
-
0036207347
-
Modeling and simulation of genetic regulatory systems: a literature review
-
De Jong H. Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 9 (2002) 67-103
-
(2002)
J Comput Biol
, vol.9
, pp. 67-103
-
-
De Jong, H.1
-
38
-
-
0842288337
-
Inferring cellular networks using probabilistic graphical models
-
Friedman N. Inferring cellular networks using probabilistic graphical models. Science 303 (2004) 799-805
-
(2004)
Science
, vol.303
, pp. 799-805
-
-
Friedman, N.1
-
39
-
-
22844441552
-
Reverse engineering gene regulatory networks
-
Hartemink A.J. Reverse engineering gene regulatory networks. Nat Biotechnol 23 (2005) 554-555
-
(2005)
Nat Biotechnol
, vol.23
, pp. 554-555
-
-
Hartemink, A.J.1
-
42
-
-
0003687180
-
-
Springer, New York
-
Cowell R.G., Dawid A.P., Lauritzen S.L., and Speigelhalter D.J. Probabilistic networks and expert systems (1999), Springer, New York
-
(1999)
Probabilistic networks and expert systems
-
-
Cowell, R.G.1
Dawid, A.P.2
Lauritzen, S.L.3
Speigelhalter, D.J.4
-
46
-
-
0004194893
-
-
AAAI Press, Menlo Park, CA
-
Glymour C., and Cooper G.F. Computation, causation and discovery (1999), AAAI Press, Menlo Park, CA
-
(1999)
Computation, causation and discovery
-
-
Glymour, C.1
Cooper, G.F.2
-
50
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper G.F., and Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Machine Learn 9 (1992) 309-347
-
(1992)
Machine Learn
, vol.9
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
51
-
-
0035221560
-
Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks
-
Hartemink A.J., Gifford D.K., Jaakkola T.S., and Young R.A. Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. Pac. symp. biocomput (2001) 422-433
-
(2001)
Pac. symp. biocomput
, pp. 422-433
-
-
Hartemink, A.J.1
Gifford, D.K.2
Jaakkola, T.S.3
Young, R.A.4
-
52
-
-
0036366689
-
Combining location and expression data for principled discovery of genetic regulatory network models
-
Hartemink A.J., Gifford D.K., Jaakkola T.S., and Young R.A. Combining location and expression data for principled discovery of genetic regulatory network models. Pac symp biocomput (2002) 437-439
-
(2002)
Pac symp biocomput
, pp. 437-439
-
-
Hartemink, A.J.1
Gifford, D.K.2
Jaakkola, T.S.3
Young, R.A.4
-
53
-
-
0008634521
-
Discovery of causal relationships in a gene-regulation pathway from a mixture of experimental and observational dna microarray data
-
Yoo C., Thorsson V., and Cooper G.F. Discovery of causal relationships in a gene-regulation pathway from a mixture of experimental and observational dna microarray data. Pac Symp Biocomput (2002) 422-433
-
(2002)
Pac Symp Biocomput
, pp. 422-433
-
-
Yoo, C.1
Thorsson, V.2
Cooper, G.F.3
-
54
-
-
0344844807
-
Modelling regulatory pathways in E. coli from time series expression profiles
-
Ong I.M., Glasner J.D., and Page D. Modelling regulatory pathways in E. coli from time series expression profiles. Bioinformatics 18 (2002) S241-S248
-
(2002)
Bioinformatics
, vol.18
-
-
Ong, I.M.1
Glasner, J.D.2
Page, D.3
-
55
-
-
0033556862
-
A unifying review of linear Gaussian models
-
Roweis S.T., and Ghahramani Z. A unifying review of linear Gaussian models. Neural Comput 11 (1999) 305-345
-
(1999)
Neural Comput
, vol.11
, pp. 305-345
-
-
Roweis, S.T.1
Ghahramani, Z.2
-
57
-
-
4143058645
-
Gene networks inference using dynamic Bayesian networks
-
Perrin B.E., Ralaivola L., Mazurie A., Bottani S., Mallet J., and d'Alche Buc F. Gene networks inference using dynamic Bayesian networks. Bioinformatics 19 (2003) S138-S148
-
(2003)
Bioinformatics
, vol.19
-
-
Perrin, B.E.1
Ralaivola, L.2
Mazurie, A.3
Bottani, S.4
Mallet, J.5
d'Alche Buc, F.6
-
58
-
-
3142744689
-
Modelling T-cell activation using gene expression profiling and state space models
-
Rangel C., Angus J., Ghahramani Z., Lioumi M., Sotheran E., Gaiba A., et al. Modelling T-cell activation using gene expression profiling and state space models. Bioinformatics 20 (2004) 1361-1372
-
(2004)
Bioinformatics
, vol.20
, pp. 1361-1372
-
-
Rangel, C.1
Angus, J.2
Ghahramani, Z.3
Lioumi, M.4
Sotheran, E.5
Gaiba, A.6
-
60
-
-
13844253637
-
A Bayesian approach to reconstructing genetic regulatory networks with hidden factors
-
Beal M.J., Falciani F., Ghahramani Z., Rangel C., and Wild D.L. A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics 21 (2005) 349-356
-
(2005)
Bioinformatics
, vol.21
, pp. 349-356
-
-
Beal, M.J.1
Falciani, F.2
Ghahramani, Z.3
Rangel, C.4
Wild, D.L.5
-
61
-
-
39149104076
-
Structural systems identification of genetic regulatory networks
-
Xiong H., and Choe Y. Structural systems identification of genetic regulatory networks. Bioinformatics 24 (2008) 553-560
-
(2008)
Bioinformatics
, vol.24
, pp. 553-560
-
-
Xiong, H.1
Choe, Y.2
-
62
-
-
85032779470
-
Finding module-based gene networks with state-space models-mining high-dimensional and short time-course gene expression data
-
Yamaguchi R., Yoshida R., Imoto S., Higuchi T., and Miyano S. Finding module-based gene networks with state-space models-mining high-dimensional and short time-course gene expression data. Signal Processing Magazine, IEEE 24 (2007) 37-46
-
(2007)
Signal Processing Magazine, IEEE
, vol.24
, pp. 37-46
-
-
Yamaguchi, R.1
Yoshida, R.2
Imoto, S.3
Higuchi, T.4
Miyano, S.5
-
63
-
-
41349101972
-
Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models
-
Hirose O., Yoshida R., Imoto S., Yamaguchi R., Higuchi T., and Charnock-Jones D.S. Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models. Bioinformatics 24 (2008) 932-942
-
(2008)
Bioinformatics
, vol.24
, pp. 932-942
-
-
Hirose, O.1
Yoshida, R.2
Imoto, S.3
Yamaguchi, R.4
Higuchi, T.5
Charnock-Jones, D.S.6
-
64
-
-
0242651270
-
Simulation studies for the identification of genetic networks from cdna array and regulatory activity data
-
Omipress, Madison, WI
-
Zak D.E., Doyle F.J., Gonye G.E., and Schwaber J.S. Simulation studies for the identification of genetic networks from cdna array and regulatory activity data. Proceedings of the 2nd international conference on systems biology. Omipress, Madison, WI (2001) 231-238
-
(2001)
Proceedings of the 2nd international conference on systems biology
, pp. 231-238
-
-
Zak, D.E.1
Doyle, F.J.2
Gonye, G.E.3
Schwaber, J.S.4
-
65
-
-
0242490789
-
Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: insights from an identifiability analysis of an in silico network
-
Zak D.E., Gonye G.E., Schwaber J.S., and Doyle III F.J. Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: insights from an identifiability analysis of an in silico network. Genome Res 13 (2003) 2396-2405
-
(2003)
Genome Res
, vol.13
, pp. 2396-2405
-
-
Zak, D.E.1
Gonye, G.E.2
Schwaber, J.S.3
Doyle III, F.J.4
-
66
-
-
0344464762
-
Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
-
Husmeier D. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19 (2003) 2271-2282
-
(2003)
Bioinformatics
, vol.19
, pp. 2271-2282
-
-
Husmeier, D.1
-
67
-
-
15944361900
-
Informative structure priors: joint learning of dynamic regulatory networks from multiple types of data
-
Altman R., Dunker A.K., Hunter L., Jung T., and Klein T. (Eds), World Scientific, New Jersey
-
Bernard A., and Hartemink A.J. Informative structure priors: joint learning of dynamic regulatory networks from multiple types of data. In: Altman R., Dunker A.K., Hunter L., Jung T., and Klein T. (Eds). Pacific symposium on biocomputing 2005 (PSB05) (2005), World Scientific, New Jersey 459-470
-
(2005)
Pacific symposium on biocomputing 2005 (PSB05)
, pp. 459-470
-
-
Bernard, A.1
Hartemink, A.J.2
-
68
-
-
84960432692
-
Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks
-
IEEE Computer Society
-
Imoto S., Higuchi T., Goto T., Kuhara S., and Miyano S. Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks. Proceedings IEEE computer society bioinformatics conference (CSB03) (2003), IEEE Computer Society 104-113
-
(2003)
Proceedings IEEE computer society bioinformatics conference (CSB03)
, pp. 104-113
-
-
Imoto, S.1
Higuchi, T.2
Goto, T.3
Kuhara, S.4
Miyano, S.5
-
69
-
-
3242891560
-
Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection
-
Tamada Y., Kim S., Bannai H., Imoto S., Tashiro K., Kuhara S.S., et al. Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection. Bioinformatics 19 (2003) ii227-ii236
-
(2003)
Bioinformatics
, vol.19
-
-
Tamada, Y.1
Kim, S.2
Bannai, H.3
Imoto, S.4
Tashiro, K.5
Kuhara, S.S.6
-
70
-
-
2442718023
-
Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks
-
Nariai N., Kim S., Imoto S., and Miyano S. Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks. Pacific symposium on biocomputing 9 (2004) 336-347
-
(2004)
Pacific symposium on biocomputing
, vol.9
, pp. 336-347
-
-
Nariai, N.1
Kim, S.2
Imoto, S.3
Miyano, S.4
-
71
-
-
0036300562
-
A Bayesian network model for protein fold and remote homologue recognition
-
Raval A., Ghahramani Z., and Wild D.L. A Bayesian network model for protein fold and remote homologue recognition. Bioinformatics 18 (2002) 788-801
-
(2002)
Bioinformatics
, vol.18
, pp. 788-801
-
-
Raval, A.1
Ghahramani, Z.2
Wild, D.L.3
-
72
-
-
34249774309
-
Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge
-
Werhli A.V., and Husmeier D. Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge. Stat Appl Genet Mol Biol 6 (2007) 1716-1733
-
(2007)
Stat Appl Genet Mol Biol
, vol.6
, pp. 1716-1733
-
-
Werhli, A.V.1
Husmeier, D.2
-
73
-
-
0041720000
-
An algorithm for estimating parameters of state-space models
-
Wu L.S.Y., Pai J.S., and Hosking J.R.M. An algorithm for estimating parameters of state-space models. Stat Probability Lett 28 (1996) 99-106
-
(1996)
Stat Probability Lett
, vol.28
, pp. 99-106
-
-
Wu, L.S.Y.1
Pai, J.S.2
Hosking, J.R.M.3
-
75
-
-
33748669610
-
Constructing biological networks through combined literature mining and microarray analysis: a LMMA approach
-
Li S., Wu L., and Zhang Z. Constructing biological networks through combined literature mining and microarray analysis: a LMMA approach. Bioinformatics 22 (2006) 2143-2150
-
(2006)
Bioinformatics
, vol.22
, pp. 2143-2150
-
-
Li, S.1
Wu, L.2
Zhang, Z.3
-
76
-
-
36248991815
-
A framework for elucidating regulatory networks based on prior information and expression data
-
Gevaert O., Vorren S.V., and Moor B.D. A framework for elucidating regulatory networks based on prior information and expression data. Ann N Y Acad Sci 1115 (2007) 240-248
-
(2007)
Ann N Y Acad Sci
, vol.1115
, pp. 240-248
-
-
Gevaert, O.1
Vorren, S.V.2
Moor, B.D.3
-
78
-
-
10044240790
-
Using prior knowledge to improve genetic network reconstruction from microarray data
-
Le Phillip P., Bahl A., and Ungar L.H. Using prior knowledge to improve genetic network reconstruction from microarray data. In Silico Biol 4 (2004) 335-353
-
(2004)
In Silico Biol
, vol.4
, pp. 335-353
-
-
Le Phillip, P.1
Bahl, A.2
Ungar, L.H.3
-
79
-
-
34548538013
-
Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge
-
Geier F., Timmer J., and Fleck C. Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge. BMC Syst Biol 1 (2007) 11
-
(2007)
BMC Syst Biol
, vol.1
, pp. 11
-
-
Geier, F.1
Timmer, J.2
Fleck, C.3
-
80
-
-
55749093996
-
Network inference using informative priors
-
Mukherjee S., and Speed T.P. Network inference using informative priors. PNAS 105 (2008) 14313-14318
-
(2008)
PNAS
, vol.105
, pp. 14313-14318
-
-
Mukherjee, S.1
Speed, T.P.2
-
81
-
-
67650284216
-
A robust Bayesian two-sample test for detecting intervals of differential gene expression in microarray time series
-
Tucson, Arizona, USA, May 18-21 [proceedings]
-
Stegle O., Denby K., Wild D.L., Ghahramani Z., and Borgwardt K.M. A robust Bayesian two-sample test for detecting intervals of differential gene expression in microarray time series. Research in computational molecular biology: 13th annual international conference, Recomb 2009. Tucson, Arizona, USA, May 18-21 (2009) 201 [proceedings]
-
(2009)
Research in computational molecular biology: 13th annual international conference, Recomb 2009
, pp. 201
-
-
Stegle, O.1
Denby, K.2
Wild, D.L.3
Ghahramani, Z.4
Borgwardt, K.M.5
-
82
-
-
33846521053
-
Reconstructing dynamic regulatory maps
-
Ernst J., Vainas O., Harbison C.T., Simon I., and Bar-Joseph Z. Reconstructing dynamic regulatory maps. Mol Syst Biol 3 (2007) 74
-
(2007)
Mol Syst Biol
, vol.3
, pp. 74
-
-
Ernst, J.1
Vainas, O.2
Harbison, C.T.3
Simon, I.4
Bar-Joseph, Z.5
|