메뉴 건너뛰기




Volumn 20, Issue 7, 2009, Pages 863-868

Computational approaches to the integration of gene expression, ChIP-chip and sequence data in the inference of gene regulatory networks

Author keywords

ChIP; Data integration; Gene expression; Gene regulatory network; Sequence data

Indexed keywords

TRANSCRIPTION FACTOR;

EID: 70349303187     PISSN: 10849521     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.semcdb.2009.08.004     Document Type: Review
Times cited : (18)

References (82)
  • 2
    • 7744225947 scopus 로고    scopus 로고
    • Transcriptional networks: reverse-engineering gene regulation on a global scale
    • Chua G., Robinson M.D., Morris Q., and Hughes T.R. Transcriptional networks: reverse-engineering gene regulation on a global scale. Curr Opin Microbiol 7 (2004) 638-646
    • (2004) Curr Opin Microbiol , vol.7 , pp. 638-646
    • Chua, G.1    Robinson, M.D.2    Morris, Q.3    Hughes, T.R.4
  • 4
    • 61349180117 scopus 로고    scopus 로고
    • Gene regulatory network inference: data integration in dynamic models-a review
    • Hecker M., Lambeck S., Toepfer S., van Someren E., and Guthke R. Gene regulatory network inference: data integration in dynamic models-a review. BioSystems 96 (2009) 86-103
    • (2009) BioSystems , vol.96 , pp. 86-103
    • Hecker, M.1    Lambeck, S.2    Toepfer, S.3    van Someren, E.4    Guthke, R.5
  • 6
    • 0036649020 scopus 로고    scopus 로고
    • Large-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clusters
    • Wu L.F., Hughes T.R., Davierwala A.P., Robinson M.D., Stoughton R., and Altschuler S.J. Large-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clusters. Nat Genet 31 (2002) 255-265
    • (2002) Nat Genet , vol.31 , pp. 255-265
    • Wu, L.F.1    Hughes, T.R.2    Davierwala, A.P.3    Robinson, M.D.4    Stoughton, R.5    Altschuler, S.J.6
  • 8
    • 0031787969 scopus 로고    scopus 로고
    • Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation
    • Roth F.P., Hughes J.D., Estep P.W., and Church G.M. Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat Biotechnol 16 (1998) 939-945
    • (1998) Nat Biotechnol , vol.16 , pp. 939-945
    • Roth, F.P.1    Hughes, J.D.2    Estep, P.W.3    Church, G.M.4
  • 10
    • 0034785443 scopus 로고    scopus 로고
    • Identifying regulatory networks by combinatorial analysis of promoter elements
    • Pilpel Y., Sudarsanam P., and Church G.M. Identifying regulatory networks by combinatorial analysis of promoter elements. Nat Genet 29 (2001) 153-159
    • (2001) Nat Genet , vol.29 , pp. 153-159
    • Pilpel, Y.1    Sudarsanam, P.2    Church, G.M.3
  • 12
    • 0037941585 scopus 로고    scopus 로고
    • Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data
    • Segal E., Shapira M., Regev A., Pe'er D., Botstein D., Koller D., et al. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 34 (2003) 166-176
    • (2003) Nat Genet , vol.34 , pp. 166-176
    • Segal, E.1    Shapira, M.2    Regev, A.3    Pe'er, D.4    Botstein, D.5    Koller, D.6
  • 13
    • 0036578795 scopus 로고    scopus 로고
    • Network motifs in the transcriptional regulation network of Escherichia coli
    • Shen-Orr S.S., Milo R., Mangan S., and Alon U. Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31 (2002) 64-68
    • (2002) Nat Genet , vol.31 , pp. 64-68
    • Shen-Orr, S.S.1    Milo, R.2    Mangan, S.3    Alon, U.4
  • 16
    • 34147188925 scopus 로고    scopus 로고
    • In vivo demonstration of FNR dimers in response to lower O2 availability
    • Jervis A.A., and Green J. In vivo demonstration of FNR dimers in response to lower O2 availability. J Bacteriol 189 (2007) 2930-2932
    • (2007) J Bacteriol , vol.189 , pp. 2930-2932
    • Jervis, A.A.1    Green, J.2
  • 18
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm with discussion
    • Dempster A.P., Laird N.M., and Rubin D.B. Maximum likelihood from incomplete data via the EM algorithm with discussion. R J Stat Soc Ser B 39 (1977) 1-38
    • (1977) R J Stat Soc Ser B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 19
    • 0035135420 scopus 로고    scopus 로고
    • Regulatory element detection using correlation with expression
    • Bussemaker H.J., Li H., and Siggia E.D. Regulatory element detection using correlation with expression. Nat Genet 27 (2001) 167-171
    • (2001) Nat Genet , vol.27 , pp. 167-171
    • Bussemaker, H.J.1    Li, H.2    Siggia, E.D.3
  • 20
    • 63549148608 scopus 로고    scopus 로고
    • Transcription factor binding site prediction with multivariate gene expression data
    • Zhang N.R., Wildermuth M.C., and Speed T.P. Transcription factor binding site prediction with multivariate gene expression data. Ann Appl Stat 2 (2008) 332-365
    • (2008) Ann Appl Stat , vol.2 , pp. 332-365
    • Zhang, N.R.1    Wildermuth, M.C.2    Speed, T.P.3
  • 21
    • 34547630151 scopus 로고    scopus 로고
    • ChIP-seq: welcome to the new frontier
    • Mardis E.R. ChIP-seq: welcome to the new frontier. Nat Methods 4 (2008) 613-614
    • (2008) Nat Methods , vol.4 , pp. 613-614
    • Mardis, E.R.1
  • 22
    • 33646510364 scopus 로고    scopus 로고
    • Genome-wide analysis of protein-DNA interactions
    • Kim T.H., and Ren B. Genome-wide analysis of protein-DNA interactions. Ann Rev Genom Hum Genet 7 (2006) 81-102
    • (2006) Ann Rev Genom Hum Genet , vol.7 , pp. 81-102
    • Kim, T.H.1    Ren, B.2
  • 25
    • 34848855728 scopus 로고    scopus 로고
    • Bayesian hierarchical model for transcriptional module discovery by jointly modeling gene expression and ChIP-chip data
    • Liu X., Jessen W.J., Sivaganesan S., Aronow B.J., and Medvedovic M. Bayesian hierarchical model for transcriptional module discovery by jointly modeling gene expression and ChIP-chip data. BMC Bioinform 8 (2007) 283
    • (2007) BMC Bioinform , vol.8 , pp. 283
    • Liu, X.1    Jessen, W.J.2    Sivaganesan, S.3    Aronow, B.J.4    Medvedovic, M.5
  • 26
    • 77950032550 scopus 로고    scopus 로고
    • Markov chain sampling methods for Dirichlet process mixture models
    • Neal R.M. Markov chain sampling methods for Dirichlet process mixture models. J Comp Graphical Stat 9 (2000) 249-265
    • (2000) J Comp Graphical Stat , vol.9 , pp. 249-265
    • Neal, R.M.1
  • 27
    • 0000737599 scopus 로고    scopus 로고
    • Solla S.A., Leen T.K., and Muller K.-R. (Eds), Advances in Neural Information Processing Systems, MIT Press
    • Rasmussen C.E. In: Solla S.A., Leen T.K., and Muller K.-R. (Eds). The Infinite Gaussian Mixture Model vol. 12 (2000), Advances in Neural Information Processing Systems, MIT Press 554-560
    • (2000) The Infinite Gaussian Mixture Model , vol.12 , pp. 554-560
    • Rasmussen, C.E.1
  • 29
    • 0036739286 scopus 로고    scopus 로고
    • Bayesian infinite mixture model based clustering of gene expression profiles
    • Medvedovic M., and Sivaganesan S. Bayesian infinite mixture model based clustering of gene expression profiles. Bioinformatics 18 (2002) 1194-1206
    • (2002) Bioinformatics , vol.18 , pp. 1194-1206
    • Medvedovic, M.1    Sivaganesan, S.2
  • 30
    • 3042686005 scopus 로고    scopus 로고
    • Bayesian mixture model based clustering of replicated microarray data
    • Medvedovic M., Yeung K.Y., and Bumgarner R.E. Bayesian mixture model based clustering of replicated microarray data. Bioinformatics 20 (2004) 1222-1232
    • (2004) Bioinformatics , vol.20 , pp. 1222-1232
    • Medvedovic, M.1    Yeung, K.Y.2    Bumgarner, R.E.3
  • 31
    • 33747875436 scopus 로고    scopus 로고
    • Context-specific infinite mixtures for clustering gene expression profiles across diverse microarray dataset
    • Liu X., Sivaganesan S., Yeung K.Y., Guo J., Bumgarner R.E., and Medvedovic M. Context-specific infinite mixtures for clustering gene expression profiles across diverse microarray dataset. Bioinformatics 22 (2006) 1737-1744
    • (2006) Bioinformatics , vol.22 , pp. 1737-1744
    • Liu, X.1    Sivaganesan, S.2    Yeung, K.Y.3    Guo, J.4    Bumgarner, R.E.5    Medvedovic, M.6
  • 32
    • 33845756481 scopus 로고    scopus 로고
    • Model-based clustering for expression data via a Dirichlet process mixture model
    • Do K.-A., Müller P., and Vannucci M. (Eds), Cambridge University Press, Cambridge
    • Dahl D.B. Model-based clustering for expression data via a Dirichlet process mixture model. In: Do K.-A., Müller P., and Vannucci M. (Eds). Bayesian inference for gene expression and proteomics (2006), Cambridge University Press, Cambridge
    • (2006) Bayesian inference for gene expression and proteomics
    • Dahl, D.B.1
  • 33
    • 33747830882 scopus 로고    scopus 로고
    • Clustering microarray gene expression data using weighted chinese restaurant process
    • Qin Z.S. Clustering microarray gene expression data using weighted chinese restaurant process. Bioinformatics 22 (2006) 1988-1997
    • (2006) Bioinformatics , vol.22 , pp. 1988-1997
    • Qin, Z.S.1
  • 37
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and simulation of genetic regulatory systems: a literature review
    • De Jong H. Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 9 (2002) 67-103
    • (2002) J Comput Biol , vol.9 , pp. 67-103
    • De Jong, H.1
  • 38
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • Friedman N. Inferring cellular networks using probabilistic graphical models. Science 303 (2004) 799-805
    • (2004) Science , vol.303 , pp. 799-805
    • Friedman, N.1
  • 39
    • 22844441552 scopus 로고    scopus 로고
    • Reverse engineering gene regulatory networks
    • Hartemink A.J. Reverse engineering gene regulatory networks. Nat Biotechnol 23 (2005) 554-555
    • (2005) Nat Biotechnol , vol.23 , pp. 554-555
    • Hartemink, A.J.1
  • 48
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman N., Linial M., Nachman I., and Pe'er D. Using Bayesian networks to analyze expression data. J Comput Biol 7 (2000) 601-620
    • (2000) J Comput Biol , vol.7 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 50
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper G.F., and Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Machine Learn 9 (1992) 309-347
    • (1992) Machine Learn , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 51
    • 0035221560 scopus 로고    scopus 로고
    • Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks
    • Hartemink A.J., Gifford D.K., Jaakkola T.S., and Young R.A. Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. Pac. symp. biocomput (2001) 422-433
    • (2001) Pac. symp. biocomput , pp. 422-433
    • Hartemink, A.J.1    Gifford, D.K.2    Jaakkola, T.S.3    Young, R.A.4
  • 52
    • 0036366689 scopus 로고    scopus 로고
    • Combining location and expression data for principled discovery of genetic regulatory network models
    • Hartemink A.J., Gifford D.K., Jaakkola T.S., and Young R.A. Combining location and expression data for principled discovery of genetic regulatory network models. Pac symp biocomput (2002) 437-439
    • (2002) Pac symp biocomput , pp. 437-439
    • Hartemink, A.J.1    Gifford, D.K.2    Jaakkola, T.S.3    Young, R.A.4
  • 53
    • 0008634521 scopus 로고    scopus 로고
    • Discovery of causal relationships in a gene-regulation pathway from a mixture of experimental and observational dna microarray data
    • Yoo C., Thorsson V., and Cooper G.F. Discovery of causal relationships in a gene-regulation pathway from a mixture of experimental and observational dna microarray data. Pac Symp Biocomput (2002) 422-433
    • (2002) Pac Symp Biocomput , pp. 422-433
    • Yoo, C.1    Thorsson, V.2    Cooper, G.F.3
  • 54
    • 0344844807 scopus 로고    scopus 로고
    • Modelling regulatory pathways in E. coli from time series expression profiles
    • Ong I.M., Glasner J.D., and Page D. Modelling regulatory pathways in E. coli from time series expression profiles. Bioinformatics 18 (2002) S241-S248
    • (2002) Bioinformatics , vol.18
    • Ong, I.M.1    Glasner, J.D.2    Page, D.3
  • 55
    • 0033556862 scopus 로고    scopus 로고
    • A unifying review of linear Gaussian models
    • Roweis S.T., and Ghahramani Z. A unifying review of linear Gaussian models. Neural Comput 11 (1999) 305-345
    • (1999) Neural Comput , vol.11 , pp. 305-345
    • Roweis, S.T.1    Ghahramani, Z.2
  • 58
    • 3142744689 scopus 로고    scopus 로고
    • Modelling T-cell activation using gene expression profiling and state space models
    • Rangel C., Angus J., Ghahramani Z., Lioumi M., Sotheran E., Gaiba A., et al. Modelling T-cell activation using gene expression profiling and state space models. Bioinformatics 20 (2004) 1361-1372
    • (2004) Bioinformatics , vol.20 , pp. 1361-1372
    • Rangel, C.1    Angus, J.2    Ghahramani, Z.3    Lioumi, M.4    Sotheran, E.5    Gaiba, A.6
  • 59
    • 2442691914 scopus 로고    scopus 로고
    • Modeling gene expression from microarray expression data with state-space equations
    • Wu F.X., Zhang W.J., and Kusalik A.J. Modeling gene expression from microarray expression data with state-space equations. Pacific symposium for biocomputing, vol. 9 (2004) 581-592
    • (2004) Pacific symposium for biocomputing, vol. 9 , pp. 581-592
    • Wu, F.X.1    Zhang, W.J.2    Kusalik, A.J.3
  • 60
    • 13844253637 scopus 로고    scopus 로고
    • A Bayesian approach to reconstructing genetic regulatory networks with hidden factors
    • Beal M.J., Falciani F., Ghahramani Z., Rangel C., and Wild D.L. A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics 21 (2005) 349-356
    • (2005) Bioinformatics , vol.21 , pp. 349-356
    • Beal, M.J.1    Falciani, F.2    Ghahramani, Z.3    Rangel, C.4    Wild, D.L.5
  • 61
    • 39149104076 scopus 로고    scopus 로고
    • Structural systems identification of genetic regulatory networks
    • Xiong H., and Choe Y. Structural systems identification of genetic regulatory networks. Bioinformatics 24 (2008) 553-560
    • (2008) Bioinformatics , vol.24 , pp. 553-560
    • Xiong, H.1    Choe, Y.2
  • 62
    • 85032779470 scopus 로고    scopus 로고
    • Finding module-based gene networks with state-space models-mining high-dimensional and short time-course gene expression data
    • Yamaguchi R., Yoshida R., Imoto S., Higuchi T., and Miyano S. Finding module-based gene networks with state-space models-mining high-dimensional and short time-course gene expression data. Signal Processing Magazine, IEEE 24 (2007) 37-46
    • (2007) Signal Processing Magazine, IEEE , vol.24 , pp. 37-46
    • Yamaguchi, R.1    Yoshida, R.2    Imoto, S.3    Higuchi, T.4    Miyano, S.5
  • 63
    • 41349101972 scopus 로고    scopus 로고
    • Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models
    • Hirose O., Yoshida R., Imoto S., Yamaguchi R., Higuchi T., and Charnock-Jones D.S. Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models. Bioinformatics 24 (2008) 932-942
    • (2008) Bioinformatics , vol.24 , pp. 932-942
    • Hirose, O.1    Yoshida, R.2    Imoto, S.3    Yamaguchi, R.4    Higuchi, T.5    Charnock-Jones, D.S.6
  • 65
    • 0242490789 scopus 로고    scopus 로고
    • Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: insights from an identifiability analysis of an in silico network
    • Zak D.E., Gonye G.E., Schwaber J.S., and Doyle III F.J. Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: insights from an identifiability analysis of an in silico network. Genome Res 13 (2003) 2396-2405
    • (2003) Genome Res , vol.13 , pp. 2396-2405
    • Zak, D.E.1    Gonye, G.E.2    Schwaber, J.S.3    Doyle III, F.J.4
  • 66
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • Husmeier D. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19 (2003) 2271-2282
    • (2003) Bioinformatics , vol.19 , pp. 2271-2282
    • Husmeier, D.1
  • 67
    • 15944361900 scopus 로고    scopus 로고
    • Informative structure priors: joint learning of dynamic regulatory networks from multiple types of data
    • Altman R., Dunker A.K., Hunter L., Jung T., and Klein T. (Eds), World Scientific, New Jersey
    • Bernard A., and Hartemink A.J. Informative structure priors: joint learning of dynamic regulatory networks from multiple types of data. In: Altman R., Dunker A.K., Hunter L., Jung T., and Klein T. (Eds). Pacific symposium on biocomputing 2005 (PSB05) (2005), World Scientific, New Jersey 459-470
    • (2005) Pacific symposium on biocomputing 2005 (PSB05) , pp. 459-470
    • Bernard, A.1    Hartemink, A.J.2
  • 69
    • 3242891560 scopus 로고    scopus 로고
    • Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection
    • Tamada Y., Kim S., Bannai H., Imoto S., Tashiro K., Kuhara S.S., et al. Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection. Bioinformatics 19 (2003) ii227-ii236
    • (2003) Bioinformatics , vol.19
    • Tamada, Y.1    Kim, S.2    Bannai, H.3    Imoto, S.4    Tashiro, K.5    Kuhara, S.S.6
  • 70
    • 2442718023 scopus 로고    scopus 로고
    • Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks
    • Nariai N., Kim S., Imoto S., and Miyano S. Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks. Pacific symposium on biocomputing 9 (2004) 336-347
    • (2004) Pacific symposium on biocomputing , vol.9 , pp. 336-347
    • Nariai, N.1    Kim, S.2    Imoto, S.3    Miyano, S.4
  • 71
    • 0036300562 scopus 로고    scopus 로고
    • A Bayesian network model for protein fold and remote homologue recognition
    • Raval A., Ghahramani Z., and Wild D.L. A Bayesian network model for protein fold and remote homologue recognition. Bioinformatics 18 (2002) 788-801
    • (2002) Bioinformatics , vol.18 , pp. 788-801
    • Raval, A.1    Ghahramani, Z.2    Wild, D.L.3
  • 72
    • 34249774309 scopus 로고    scopus 로고
    • Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge
    • Werhli A.V., and Husmeier D. Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge. Stat Appl Genet Mol Biol 6 (2007) 1716-1733
    • (2007) Stat Appl Genet Mol Biol , vol.6 , pp. 1716-1733
    • Werhli, A.V.1    Husmeier, D.2
  • 73
    • 0041720000 scopus 로고    scopus 로고
    • An algorithm for estimating parameters of state-space models
    • Wu L.S.Y., Pai J.S., and Hosking J.R.M. An algorithm for estimating parameters of state-space models. Stat Probability Lett 28 (1996) 99-106
    • (1996) Stat Probability Lett , vol.28 , pp. 99-106
    • Wu, L.S.Y.1    Pai, J.S.2    Hosking, J.R.M.3
  • 75
    • 33748669610 scopus 로고    scopus 로고
    • Constructing biological networks through combined literature mining and microarray analysis: a LMMA approach
    • Li S., Wu L., and Zhang Z. Constructing biological networks through combined literature mining and microarray analysis: a LMMA approach. Bioinformatics 22 (2006) 2143-2150
    • (2006) Bioinformatics , vol.22 , pp. 2143-2150
    • Li, S.1    Wu, L.2    Zhang, Z.3
  • 76
    • 36248991815 scopus 로고    scopus 로고
    • A framework for elucidating regulatory networks based on prior information and expression data
    • Gevaert O., Vorren S.V., and Moor B.D. A framework for elucidating regulatory networks based on prior information and expression data. Ann N Y Acad Sci 1115 (2007) 240-248
    • (2007) Ann N Y Acad Sci , vol.1115 , pp. 240-248
    • Gevaert, O.1    Vorren, S.V.2    Moor, B.D.3
  • 78
    • 10044240790 scopus 로고    scopus 로고
    • Using prior knowledge to improve genetic network reconstruction from microarray data
    • Le Phillip P., Bahl A., and Ungar L.H. Using prior knowledge to improve genetic network reconstruction from microarray data. In Silico Biol 4 (2004) 335-353
    • (2004) In Silico Biol , vol.4 , pp. 335-353
    • Le Phillip, P.1    Bahl, A.2    Ungar, L.H.3
  • 79
    • 34548538013 scopus 로고    scopus 로고
    • Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge
    • Geier F., Timmer J., and Fleck C. Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge. BMC Syst Biol 1 (2007) 11
    • (2007) BMC Syst Biol , vol.1 , pp. 11
    • Geier, F.1    Timmer, J.2    Fleck, C.3
  • 80
    • 55749093996 scopus 로고    scopus 로고
    • Network inference using informative priors
    • Mukherjee S., and Speed T.P. Network inference using informative priors. PNAS 105 (2008) 14313-14318
    • (2008) PNAS , vol.105 , pp. 14313-14318
    • Mukherjee, S.1    Speed, T.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.