-
1
-
-
39149107070
-
State-space approach with the maximum likelihood principle to identify the system generating time-course gene expression data of yeast
-
R. Yamaguchi and T. Higuchi, “State-space approach with the maximum likelihood principle to identify the system generating time-course gene expression data of yeast,” Int. J. Data Mining Bioinformatics, vol. 1, no. 1, pp. 77–87, 2006.
-
(2006)
Int. J. Data Mining Bioinformatics
, vol.1
, Issue.1
, pp. 77-87
-
-
Yamaguchi, R.1
Higuchi, T.2
-
2
-
-
0003578943
-
Forecasting, Structural Time Series Models and the Kalman Filter
-
New York: Cambridge Univ. Press
-
A.C. Harvey, Forecasting, Structural Time Series Models and the Kalman Filter. New York: Cambridge Univ. Press, 1989.
-
(1989)
-
-
Harvey, A.C.1
-
3
-
-
84986753417
-
An approach to time series smoothing and forecasting using the EM algorithm
-
R.H. Shumway and D.S. Stoffer, “An approach to time series smoothing and forecasting using the EM algorithm,” J. Time Series Anal., vol. 3, no. 4, pp. 253-264,1982.
-
(1982)
J. Time Series Anal.
, vol.3
, Issue.4
, pp. 253-264
-
-
Shumway, R.H.1
Stoffer, D.S.2
-
4
-
-
0003789099
-
Smoothness Priors Analysis of Time Series
-
New York: Springer-Verlag
-
G. Kitagawa and W. Gersch, Smoothness Priors Analysis of Time Series. New York: Springer-Verlag, 1996.
-
(1996)
-
-
Kitagawa, G.1
Gersch, W.2
-
5
-
-
3142744689
-
Modelling T-cell activation using gene expression profiling and state space models
-
C. Rangel, J. Angus, Z. Ghahramani, M. Lioumi, E. Sotheran, A. Gaiba, D.L. Wild, and F. Falciani, “Modelling T-cell activation using gene expression profiling and state space models,” Bioinformatics, vol. 20, no. 9, pp. 1361–1372, 2004.
-
(2004)
Bioinformatics
, vol.20
, Issue.9
, pp. 1361-1372
-
-
Rangel, C.1
Angus, J.2
Ghahramani, Z.3
Lioumi, M.4
Sotheran, E.5
Gaiba, A.6
Wild, D.L.7
Falciani, F.8
-
6
-
-
2442691914
-
Modeling gene expression from microarray expression data with state-space equations
-
City, State
-
F.X. Wu, W.J. Zhang, and A.J. Kusalic, “Modeling gene expression from microarray expression data with state-space equations,” in Proc. Pacific Symp. Biocomputing, City, State, vol. 9,2004, pp. 581–592.
-
(2004)
Proc. Pacific Symp. Biocomputing
, vol.9
, pp. 581-592
-
-
Wu, F.X.1
Zhang, W.J.2
Kusalic, A.J.3
-
7
-
-
84898615550
-
System identification of gene expression time-series based on a linear dynamical system model with variational Bayesian estimation
-
(in Japanese)
-
N. Yukinawa, J. Yoshimoto, S. Oba, and S. Ishii, “System identification of gene expression time-series based on a linear dynamical system model with variational Bayesian estimation,” (in Japanese), Inf. Process. Soc. Japan, Trans. Math. Modeling and Its Applicat., vol. 46, no. 10, pp. 57–65, 2005.
-
(2005)
Inf. Process. Soc. Japan, Trans. Math. Modeling and Its Applicat.
, vol.46
, Issue.10
, pp. 57-65
-
-
Yukinawa, N.1
Yoshimoto, J.2
Oba, S.3
Ishii, S.4
-
8
-
-
10744226222
-
Computational discovery of gene modules and regulatory networks
-
Z. Bar-Joseph, G.K. Gerber, T.I. Lee, N.J. Rinaldi, J.Y. Yoo, F. Robert, D.B. Gordon, E. Fraenke, T.S. Jaakkola, R.A. Young, and D.K. Gifford, “Computational discovery of gene modules and regulatory networks,” Nat. Biotechnol., vol. 21, no. 11, pp. 1337–1342, 2003.
-
(2003)
Nat. Biotechnol.
, vol.21
, Issue.11
, pp. 1337-1342
-
-
Bar-Joseph, Z.1
Gerber, G.K.2
Lee, T.I.3
Rinaldi, N.J.4
Yoo, J.Y.5
Robert, F.6
Gordon, D.B.7
Fraenke, E.8
Jaakkola, T.S.9
Young, R.A.10
Gifford, D.K.11
-
9
-
-
0037941585
-
Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data
-
E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller, and N. Friedman, “Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data,” Nat. Genetics, vol. 34, no. 2, pp. 166–176, 2003.
-
(2003)
Nat. Genetics
, vol.34
, Issue.2
, pp. 166-176
-
-
Segal, E.1
Shapira, M.2
Regev, A.3
Pe’er, D.4
Botstein, D.5
Koller, D.6
Friedman, N.7
-
10
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” J. Royal Statistical Soc., ser. B, vol. 39, no. 1, pp. 1-38,1977.
-
(1977)
J. Royal Statistical Soc., ser. B
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.1
Laird, N.2
Rubin, D.3
-
11
-
-
0031742022
-
Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization
-
P.T. Spellman, G. Sherlock, M.Q. Zhang, V.R. Iyer, K. Anders, M.B. Eisen, P.O. Brown, D. Botstein, and B. Futcher, “Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization,” Mol. Biol. Cell, vol. 9, no. 12. pp. 3273- 3297,1998.
-
(1998)
Mol. Biol. Cell
, vol.9
, Issue.12
, pp. 3273-3297
-
-
Spellman, P.T.1
Sherlock, G.2
Zhang, M.Q.3
Iyer, V.R.4
Anders, K.5
Eisen, M.B.6
Brown, P.O.7
Botstein, D.8
Futcher, B.9
-
12
-
-
0000120766
-
Estimating the dimension of a model
-
G. Schwarz, “Estimating the dimension of a model,” Ann. Statist., vol. 6, no. 2, pp. 461-464,1978.
-
(1978)
Ann. Statist.
, vol.6
, Issue.2
, pp. 461-464
-
-
Schwarz, G.1
-
13
-
-
0003278032
-
Inferring parameters and structure of latent variable models by variational Bayes
-
H. Attias, “Inferring parameters and structure of latent variable models by variational Bayes,” in Proc. 15th Conf. Uncertainty Artificial Intelligence, 1999, pp. 21–30.
-
(1999)
Proc. 15th Conf. Uncertainty Artificial Intelligence
, pp. 21-30
-
-
Attias, H.1
-
14
-
-
84899003086
-
Propagation algorithms for variational Bayesian learning
-
Z. Ghahramani and M.J. Beal, “Propagation algorithms for variational Bayesian learning,” Adv. Neural Inform. Process. Syst., vol. 13, no. 1, pp. 507–513, 2001.
-
(2001)
Adv. Neural Inform. Process. Syst.
, vol.13
, Issue.1
, pp. 507-513
-
-
Ghahramani, Z.1
Beal, M.J.2
-
15
-
-
33646231363
-
System identification based on on-line variational Bayes method and its application to reinforcement learning
-
J. Yoshimoto, S. Ishii, and M. Sato, “System identification based on on-line variational Bayes method and its application to reinforcement learning,” in Proc. Artificial Neural Networks and Neural Information Processing (ICANN/ICNIP 2003), pp. 123–131, 2003.
-
(2003)
Proc. Artificial Neural Networks and Neural Information Processing (ICANN/ICNIP 2003)
, pp. 123-131
-
-
Yoshimoto, J.1
Ishii, S.2
Sato, M.3
-
16
-
-
0141515892
-
Dynamic mixed models for irregularly observed time series
-
Univ. Sao Paulo, Brazil: Univ. San Paulo Press
-
R.H. Shumway, “Dynamic mixed models for irregularly observed time series,” Resenhas-Reviews of the Institute of Mathematics and Statistics, Univ. Sao Paulo, Brazil: Univ. San Paulo Press, vol. 4, no. 4, pp. 433-456. 2000.
-
(2000)
Resenhas-Reviews of the Institute of Mathematics and Statistics
, vol.4
, Issue.4
, pp. 433-456
-
-
Shumway, R.H.1
-
17
-
-
85024429815
-
A new approach to linear filtering and prediction problems
-
R.E. Kalman, “A new approach to linear filtering and prediction problems,” Trans. Amer. Soc. Mech. Eng., J. Basic Eng., vol. 82, no. 1, pp. 35–45, 1960.
-
(1960)
Trans. Amer. Soc. Mech. Eng., J. Basic Eng.
, vol.82
, Issue.1
, pp. 35-45
-
-
Kalman, R.E.1
-
18
-
-
0041720000
-
An algorithm for estimating parameters of state-space models
-
L.S.-Y. Wu, J.S. Pai, and J.R.M. Hosking, “An algorithm for estimating parameters of state-space models,” Stat. Prob. Lett., vol. 28, no. 2, pp. 99–106, 1996.
-
(1996)
Stat. Prob. Lett.
, vol.28
, Issue.2
, pp. 99-106
-
-
Wu, L.S.-Y.1
Pai, J.S.2
Hosking, J.R.M.3
-
19
-
-
0033707946
-
Using Bayesian network to analyze expression data
-
N. Friedman, M. Linial, I. Nachman, and D. Pe’er., “Using Bayesian network to analyze expression data,”J. Comp. Biol., vol. 7, no. 3–4, pp. 601-620,2000.
-
(2000)
J. Comp. Biol.
, vol.7
, Issue.3-4
, pp. 601-620
-
-
Friedman, N.1
Linial, M.2
Nachman, I.3
Pe’er, D.4
-
20
-
-
0036184629
-
Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks
-
I. Shmulevich, E.R. Dougherty, S. Kim, and W. Zhang, “Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks,” Bioinformatics, vol. 18, no. 2, pp. 261-274,2002.
-
(2002)
Bioinformatics
, vol.18
, Issue.2
, pp. 261-274
-
-
Shmulevich, I.1
Dougherty, E.R.2
Kim, S.3
Zhang, W.4
-
21
-
-
3242875300
-
Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks
-
S. Imoto, T. Higuchi, T. Goto, K. Tashiro, S. Kuhara, and S. Miyano, “Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks,” J. Bioinform. Comp. Biol., vol. 2, no. 1, pp. 77-98,2004.
-
(2004)
J. Bioinform. Comp. Biol.
, vol.2
, Issue.1
, pp. 77-98
-
-
Imoto, S.1
Higuchi, T.2
Goto, T.3
Tashiro, K.4
Kuhara, S.5
Miyano, S.6
|