-
1
-
-
0033707946
-
Using Bayesian networks to analyze expression data
-
FRIEDMAN, N., M. LINIAL, I. NACHMAN, et al. 2000. Using Bayesian networks to analyze expression data. J. Comput. Biol. 7: 601-620.
-
(2000)
J. Comput. Biol
, vol.7
, pp. 601-620
-
-
FRIEDMAN, N.1
LINIAL, M.2
NACHMAN, I.3
-
2
-
-
0037941585
-
Module networks: Indentifying regulatory modules and their condition-specific regulators from gene expression data
-
SEGAL, E., M. SHAPIRA, A. REGEV, et al. 2003. Module networks: indentifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet. 34: 166-176.
-
(2003)
Nat. Genet
, vol.34
, pp. 166-176
-
-
SEGAL, E.1
SHAPIRA, M.2
REGEV, A.3
-
3
-
-
0344464762
-
Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
-
HUSMEIER, D. 2003. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19: 2271-2282.
-
(2003)
Bioinformatics
, vol.19
, pp. 2271-2282
-
-
HUSMEIER, D.1
-
4
-
-
3042698613
-
Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network
-
IMOTO, S., S. KIM, T. GOTO, et al. 2003. Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network. J. Bioinform. Comput. Biol. 1: 231-252.
-
(2003)
J. Bioinform. Comput. Biol
, vol.1
, pp. 231-252
-
-
IMOTO, S.1
KIM, S.2
GOTO, T.3
-
5
-
-
33745812835
-
Predicting the outcome of pregnancies of unknown location: Bayesian networks with expert prior information compared to logistic regression
-
GEVAERT, O., F. DE SMET, E. KIRK, et al. 2006. Predicting the outcome of pregnancies of unknown location: Bayesian networks with expert prior information compared to logistic regression. Hum. Reprod. 21 (7): 1824-1831.
-
(2006)
Hum. Reprod
, vol.21
, Issue.7
, pp. 1824-1831
-
-
GEVAERT, O.1
DE SMET, F.2
KIRK, E.3
-
6
-
-
1842714948
-
Using literature and data to learn Bayesian networks as clinical models of ovarian tumours
-
ANTAL, P., G. FANNES, D. TIMMERMAN, et al. 2004. Using literature and data to learn Bayesian networks as clinical models of ovarian tumours. Artif. Intel. Med. 30: 257-281.
-
(2004)
Artif. Intel. Med
, vol.30
, pp. 257-281
-
-
ANTAL, P.1
FANNES, G.2
TIMMERMAN, D.3
-
9
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
COOPER, G.F. & E. HERSKOVITS. 1992. A Bayesian method for the induction of probabilistic networks from data. Machine Learning 9 (4): 309-347.
-
(1992)
Machine Learning
, vol.9
, Issue.4
, pp. 309-347
-
-
COOPER, G.F.1
HERSKOVITS, E.2
-
10
-
-
33747891871
-
Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks
-
GEVAERT, O., F. DE SMET, D. TIMMERMAN, et al. 2006. Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics 22: e184-e190.
-
(2006)
Bioinformatics
, vol.22
-
-
GEVAERT, O.1
DE SMET, F.2
TIMMERMAN, D.3
-
11
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
HECKERMAN, D., D. GEIGER & D.M. CHICKERING. 1995. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning 20: 197-243.
-
(1995)
Machine Learning
, vol.20
, pp. 197-243
-
-
HECKERMAN, D.1
GEIGER, D.2
CHICKERING, D.M.3
-
12
-
-
13444272070
-
-
ALFARANO, C., C.E. ANDRADE, K. ANTHONY, et al. 2005. The Biomolecular Interaction Network Database and related tools 2005 update. Nucleic Acids Res. 1; 33 (Database issue): D418-D424.
-
ALFARANO, C., C.E. ANDRADE, K. ANTHONY, et al. 2005. The Biomolecular Interaction Network Database and related tools 2005 update. Nucleic Acids Res. 1; 33 (Database issue): D418-D424.
-
-
-
-
13
-
-
33644876958
-
-
MATYS, V., O.V. KEL-MARGOULIS, E. FRICKE, et al. 2006. TRANSFAC(R) and its module TRANSCompel(R): transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 1; 34 (Database issue): D108-D110.
-
MATYS, V., O.V. KEL-MARGOULIS, E. FRICKE, et al. 2006. TRANSFAC(R) and its module TRANSCompel(R): transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 1; 34 (Database issue): D108-D110.
-
-
-
-
14
-
-
9144248312
-
-
HERMJAKOB, H., L. MONTECCHI-PALAZZI, C. LEWINGTON, et al. 2004. IntAct: an open source molecular interaction database. Nucl. Acids Res. 1; 32 (Database issue): D452-D455.
-
HERMJAKOB, H., L. MONTECCHI-PALAZZI, C. LEWINGTON, et al. 2004. IntAct: an open source molecular interaction database. Nucl. Acids Res. 1; 32 (Database issue): D452-D455.
-
-
-
-
15
-
-
31144459985
-
-
BILD, A., G. YAO, J. CHANG, et al. 2005. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 19; 439 (7074): 353-357.
-
BILD, A., G. YAO, J. CHANG, et al. 2005. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 19; 439 (7074): 353-357.
-
-
-
-
16
-
-
0242490780
-
Cytoscape: A software environment for integrated models of biomolecular interaction networks
-
SHANNON, P., A. MARKIEL, O. OZIER, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13: 2498-2504.
-
(2003)
Genome Res
, vol.13
, pp. 2498-2504
-
-
SHANNON, P.1
MARKIEL, A.2
OZIER, O.3
-
17
-
-
18244409687
-
Gene expression profiling predicts clinical outcome of breast cancer
-
VAN'T VEER, L.J., H. DAI, M.J. VAN DE VIJVER, et al. 2002. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530-536.
-
(2002)
Nature
, vol.415
, pp. 530-536
-
-
VAN'T VEER, L.J.1
DAI, H.2
VAN DE VIJVER, M.J.3
|