메뉴 건너뛰기




Volumn 35, Issue , 2009, Pages 391-447

Learning bayesian network equivalence classes with ant colony optimization

Author keywords

[No Author keywords available]

Indexed keywords

ANT COLONY OPTIMIZATION; ARTIFICIAL INTELLIGENCE; EQUIVALENCE CLASSES;

EID: 68349117241     PISSN: None     EISSN: 10769757     Source Type: Journal    
DOI: 10.1613/jair.2681     Document Type: Article
Times cited : (63)

References (81)
  • 1
    • 0030095171 scopus 로고    scopus 로고
    • Hailfinder: A Bayesian system for forecasting severe weather
    • DOI 10.1016/0169-2070(95)00664-8
    • Abramson, B., Brown, J., Edwards, W., Murphy, A., & Winkler, R. L. (1996). Hailfinder: A Bayesian system for forecasting severe weather. International Journal of Forecasting, 12(1), 57-71. doi: 10.1016/0169-2070(95) 00664-668 (Pubitemid 126160223)
    • (1996) International Journal of Forecasting , vol.12 , Issue.1 , pp. 57-71
    • Abramson, B.1    Brown, J.2    Edwards, W.3    Murphy, A.4    Winkler, R.L.5
  • 2
    • 21244484641 scopus 로고    scopus 로고
    • Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs
    • Acid, S., & de Campos, L. M. (2003). Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs. Journal of Artificial Intelligence Research, 18, 445-490. (Pubitemid 41525942)
    • (2003) Journal of Artificial Intelligence Research , vol.18 , pp. 445-490
    • Acid, S.1    De Campos, L.M.2
  • 3
    • 68349092365 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from classified microarray data: Initial results
    • doi: 10.1186/1471-2105-6-S3-S4
    • Aitken, S., Jirapech-Umpai, T., & Daly, R. (2005). Inferring gene regulatory networks from classified microarray data: Initial results. BMC Bioinformatics, 6(Suppl 3), S4. doi: 10.1186/1471-2105-6-S3-S4.
    • (2005) BMC Bioinformatics , vol.6 , Issue.SUPPL 3
    • Aitken, S.1    Jirapech-Umpai, T.2    Daly, R.3
  • 4
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • doi: 10.1109/TAC.1974.1100705
    • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723. doi: 10.1109/TAC.1974.1100705.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 5
    • 0031531764 scopus 로고    scopus 로고
    • A characterization of Markov equivalence classes for acyclic digraphs
    • Andersson, S. A., Madigan, D., & Perlman, M. D. (1997). A characterization of Markov equivalence classes for acyclic digraphs. The Annals of Statistics, 25(2), 505-541. doi: 10.1214/aos/1031833662. (Pubitemid 127064053)
    • (1997) Annals of Statistics , vol.25 , Issue.2 , pp. 505-541
    • Andersson, S.A.1    Madigan, D.2    Perlman, M.D.3
  • 7
    • 0003984832 scopus 로고
    • Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning
    • School of Computer Science, Carnegie Mellon University
    • Baluja, S. (1994). Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning. Technical Report CMU-CS-94-163, School of Computer Science, Carnegie Mellon University.
    • (1994) Technical Report CMU-CS-94-163
    • Baluja, S.1
  • 9
    • 84974695644 scopus 로고    scopus 로고
    • Toward the formal foundation of ant programming
    • of Lecture Notes in Computer Science, Springer-Verlag
    • Birattari, M., Caro, G. D., & Dorigo, M. (2002). Toward the formal foundation of ant programming. In Proceedings of the Third International Workshop on Ant Algorithms, volume 2463 of LectureNotes in Computer Science, (pages 188-201). Springer-Verlag.
    • (2002) Proceedings of the Third International Workshop on Ant Algorithms , vol.2463 , pp. 188-201
    • Birattari, M.1    Caro, G.D.2    Dorigo, M.3
  • 11
    • 0033446619 scopus 로고    scopus 로고
    • An improved ant system algorithm for the vehicle routing problem
    • doi: 10.1023/A: 1018940026670
    • Bullnheimer, B., Hartl, R. F., & Strauss, C. (1999). An improved ant system algorithm for the vehicle routing problem. Annals of Operations Research, 89, 319-328. doi: 10.1023/A: 1018940026670.
    • (1999) Annals of Operations Research , vol.89 , pp. 319-328
    • Bullnheimer, B.1    Hartl, R.F.2    Strauss, C.3
  • 14
    • 0036567524 scopus 로고    scopus 로고
    • Learning Bayesian networks from data: An information-theory based approach
    • DOI 10.1016/S0004-3702(02)00191-1, PII S0004370202001911
    • Cheng, J., Greiner, R.,Kelly, J., Bell, D.,& Liu, W. (2002). Learning Bayesian networks from data: An information-theory based approach. Artificial Intelligence, 137(1-2), 43-90. doi: 10.1016/S0004-3702(02)00191-201 (Pubitemid 34405215)
    • (2002) Artificial Intelligence , vol.137 , Issue.1-2 , pp. 43-90
    • Cheng, J.1    Greiner, R.2    Kelly, J.3    Bell, D.4    Liu, W.5
  • 16
    • 0001019707 scopus 로고    scopus 로고
    • Learning Bayesian networks is NP-complete
    • In D. Fisher, & H.-J. Lenz (Eds.),of Lecture Notes in Statistics, Springer
    • Chickering, D. M. (1996a). Learning Bayesian networks is NP-complete. In D. Fisher, & H.-J. Lenz (Eds.), Learning from Data: Artificial Intelligence and Statistics V, volume 112 of Lecture Notes in Statistics, (pages 121-130). Springer.
    • (1996) Learning from Data: Artificial Intelligence and Statistics V , vol.112 , pp. 121-130
    • Chickering, D.M.1
  • 18
    • 0042496103 scopus 로고    scopus 로고
    • Learning equivalence classes of Bayesian-network structures
    • Chickering, D. M. (2002a). Learning equivalence classes of Bayesian-network structures. Journal of Machine Learning Research, 2, 445-498.
    • (2002) Journal of Machine Learning Research , vol.2 , pp. 445-498
    • Chickering, D.M.1
  • 19
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with greedy search
    • Chickering, D. M. (2002b). Optimal structure identification with greedy search. Journal of Machine Learning Research, 3, 507-554.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 507-554
    • Chickering, D.M.1
  • 20
    • 0002157592 scopus 로고    scopus 로고
    • Learning Bayesian networks: Search methods and experimental results
    • In D. Fisher, & H.-J. Lenz (Eds.), of Lecture Notes in Statistics, Springer
    • Chickering, D. M., Geiger, D., & Heckerman, D. (1996). Learning Bayesian networks: Search methods and experimental results. In D. Fisher, & H.-J. Lenz (Eds.), Learning from Data: Artificial Intelligence and Statistics V, volume 112 of Lecture Notes in Statistics, (pages 112-128). Springer.
    • (1996) Learning from Data: Artificial Intelligence and Statistics V , vol.112 , pp. 112-128
    • Chickering, D.M.1    Geiger, D.2    Heckerman, D.3
  • 23
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • doi: 10.1007/BF00994110
    • Cooper, G. F.,& Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9(4), 309-347. doi: 10.1007/BF00994110.
    • (1992) Machine Learning , vol.9 , Issue.4 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 24
    • 0031103969 scopus 로고    scopus 로고
    • Ants can colour graphs
    • Costa, D., & Hertz, A. (1997). Ants can colour graphs. Journal of the Operational Research Society, 48(3), 295-305. doi: 10.1057/palgrave.jors. 2600357. (Pubitemid 127608040)
    • (1997) Journal of the Operational Research Society , vol.48 , Issue.3 , pp. 295-305
    • Costa, D.1    Hertz, A.2
  • 26
    • 34948848213 scopus 로고    scopus 로고
    • Conditions under which conditional independence and scoring methods lead to identical selection of Bayesian network models
    • In J. Breese, & D. Koller (Eds.), Morgan Kaufmann
    • Cowell, R. (2001). Conditions under which conditional independence and scoring methods lead to identical selection of Bayesian network models. In J. Breese, & D. Koller (Eds.), Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence (UAI-01), (pages 91-97). Morgan Kaufmann.
    • (2001) Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence (UAI-01) , pp. 91-97
    • Cowell, R.1
  • 27
    • 0027560587 scopus 로고
    • Approximating probabilistic inference in Bayesian belief networks is NP-hard
    • DOI 10.1016/0004-3702(93)90036-B
    • Dagum, P., & Luby, M. (1993). Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artificial Intelligence, 60(1), 141-154. doi: 10.1016/0004-3702(93)90036-B. (Pubitemid 23622908)
    • (1993) Artificial Intelligence , vol.60 , Issue.1 , pp. 141-153
    • Dagum Paul1    Luby Michael2
  • 30
    • 34249938725 scopus 로고    scopus 로고
    • Bayesian network learning algorithms using structural restrictions
    • DOI 10.1016/j.ijar.2006.06.009, PII S0888613X06000612, Eighth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2005)
    • de Campos, L. M., & Castellano, J. G. (2007). Bayesian network learning algorithms using structural restrictions. International Journal of Approximate Reasoning, 45(2), 233-254. doi: 10.1016/j.ijar.2006.06.009. (Pubitemid 46880196)
    • (2007) International Journal of Approximate Reasoning , vol.45 , Issue.2 , pp. 233-254
    • De Campos, L.M.1    Castellano, J.G.2
  • 31
    • 0036856515 scopus 로고    scopus 로고
    • Ant colony optimization for learning Bayesian networks
    • DOI 10.1016/S0888-613X(02)00091-9, PII S0888613X02000919
    • de Campos, L. M., Fernández-Luna, J. M., Gámez, J. A., & Puerta, J. M. (2002). Ant colony optimization for learning Bayesian networks. International Journal of Approximate Reasoning, 31(3), 291-311. doi: 10.1016/S0888-613X(02)00091-99 (Pubitemid 35411834)
    • (2002) International Journal of Approximate Reasoning , vol.31 , Issue.3 , pp. 291-311
    • De Campos, L.M.1    Fernandez-Luna, J.M.2    Gamez, J.A.3    Puerta, J.M.4
  • 32
    • 33645423346 scopus 로고    scopus 로고
    • Learning Bayesian networks by ant colony optimisation: Searching in two different spaces
    • de Campos, L. M., Gámez, J. A., & Puerta, J. M. (2002). Learning Bayesian networks by ant colony optimisation: Searching in two different spaces. Mathware & Soft Computing, 9(2-3).
    • (2002) Mathware & Soft Computing , vol.9 , Issue.2-3
    • De Campos, L.M.1    Gámez, J.A.2    Puerta, J.M.3
  • 33
    • 12244288095 scopus 로고    scopus 로고
    • Stochastic local algorithms for learning belief networks: Searching in the space of the orderings
    • In S. Benferhat, & P. Besnard (Eds.), of Lecture Notes in Artificial Intelligence, Springer. doi: 10.1007/3-540-44652-4-21
    • de Campos, L. M., & Puerta, J. M. (2001a). Stochastic local algorithms for learning belief networks: Searching in the space of the orderings. In S. Benferhat, & P. Besnard (Eds.), Proceedings of the Sixth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2001), volume 2143 of Lecture Notes in Artificial Intelligence, (pages 228-239). Springer. doi: 10.1007/3-540-44652-4-21.
    • (2001) Proceedings of the Sixth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2001) , vol.2143 , pp. 228-239
    • De Campos, L.M.1    Puerta, J.M.2
  • 35
    • 0001106375 scopus 로고
    • The self-organizing exploratory pattern of the argentine ant
    • doi: 10.1007/BF01417909
    • Deneubourg, J. L., Aron, S., Goss, S., & Pasteels, J. M. (1990). The self-organizing exploratory pattern of the argentine ant. Journal of Insect Behavior, 3(2), 159-168. doi: 10.1007/BF01417909.
    • (1990) Journal of Insect Behavior , vol.3 , Issue.2 , pp. 159-168
    • Deneubourg, J.L.1    Aron, S.2    Goss, S.3    Pasteels, J.M.4
  • 36
    • 0041995260 scopus 로고
    • A simple algorithm to construct a consistent extension of a partially oriented graph
    • Cognitive Systems Laboratory, Department of Computer Science, UCLA
    • Dor, D., & Tarsi, M. (1992). A simple algorithm to construct a consistent extension of a partially oriented graph. Technical Report R-185, Cognitive Systems Laboratory, Department of Computer Science, UCLA.
    • (1992) Technical Report R-185
    • Dor, D.1    Tarsi, M.2
  • 38
    • 0002012598 scopus 로고    scopus 로고
    • The ant colony optimization meta-heuristic
    • In D. Corne, M. Dorigo, & F. Glover (Eds.), McGraw-Hill
    • Dorigo, M., & Di Caro, G. (1999). The ant colony optimization meta-heuristic. In D. Corne, M. Dorigo, & F. Glover (Eds.), New Ideas in Optimization, (pages 11-32). McGraw-Hill.
    • (1999) New Ideas in Optimization , pp. 11-32
    • Dorigo, M.1    Di Caro, G.2
  • 39
    • 0031122887 scopus 로고    scopus 로고
    • Ant colony system: A cooperative learning approach to the traveling salesman problem
    • PII S1089778X97033031
    • Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1), 53-66. doi: 10.1109/4235.585892. (Pubitemid 127771018)
    • (1997) IEEE Transactions on Evolutionary Computation , vol.1 , Issue.1 , pp. 53-66
    • Dorigo, M.1    Gambardella, L.M.2
  • 43
    • 0038546313 scopus 로고    scopus 로고
    • An ant colony system hybridized with a new local search for the sequential ordering problem
    • doi: 10.1287/ijoc.12.3.237.12636
    • Gambardella, L. M., & Dorgio, M. (2000). An ant colony system hybridized with a new local search for the sequential ordering problem. INFORMS Journal on Computing, 12(3), 237-255. doi: 10.1287/ijoc.12.3.237.12636.
    • (2000) INFORMS Journal on Computing , vol.12 , Issue.3 , pp. 237-255
    • Gambardella, L.M.1    Dorgio, M.2
  • 44
  • 45
    • 0000411214 scopus 로고
    • Tabu search-Part I
    • Glover, F. (1989). Tabu search-Part I. ORSA Journal on Computing, 1(3), 190-206.
    • (1989) ORSA Journal on Computing , vol.1 , Issue.3 , pp. 190-206
    • Glover, F.1
  • 46
    • 0001724713 scopus 로고
    • Tabu search-Part II
    • Glover, F. (1990). Tabu search-Part II. ORSA Journal on Computing, 2(1), 4-32.
    • (1990) ORSA Journal on Computing , vol.2 , Issue.1 , pp. 4-32
    • Glover, F.1
  • 47
    • 0003846041 scopus 로고
    • A tutorial on learning with Bayesian networks
    • Microsoft Research
    • Heckerman, D. (1995). A tutorial on learning with Bayesian networks. Technical Report MSR-TR-95-106, Microsoft Research.
    • (1995) Technical Report MSR-TR-95-106
    • Heckerman, D.1
  • 48
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • doi: 10.1023/A: 1022623210503
    • Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20(3), 197-243. doi: 10.1023/A: 1022623210503.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 49
    • 84976362631 scopus 로고
    • Real-world applications of Bayesian networks
    • doi: 10.1145/203330.203334
    • Heckerman, D., Mamdani, A., & Wellman, M. P. (1995). Real-world applications of Bayesian networks. Communications of the ACM, 38(3), 24-26. doi: 10.1145/203330.203334.
    • (1995) Communications of the ACM , vol.38 , Issue.3 , pp. 24-26
    • Heckerman, D.1    Mamdani, A.2    Wellman, M.P.3
  • 50
    • 0012315692 scopus 로고    scopus 로고
    • A Bayesian approach to causal discovery
    • In C. Glymour, & G. F. Cooper (Eds.), AAAI Press
    • Heckerman, D., Meek, C., & Cooper, G. (1999). A Bayesian approach to causal discovery. In C. Glymour, & G. F. Cooper (Eds.), Computation, Causation, & Discovery, (pages 141-165). AAAI Press.
    • (1999) Computation, Causation, & Discovery , pp. 141-165
    • Heckerman, D.1    Meek, C.2    Cooper, G.3
  • 53
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • doi: 10.1126/science.220.4598.671
    • Kirkpatrick, S., Gelatt, C. D., Jr., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671-680. doi: 10.1126/science.220.4598.671.
    • (1983) Science , vol.220 , Issue.4598 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt Jr., C.D.2    Vecchi, M.P.3
  • 54
    • 0036250059 scopus 로고    scopus 로고
    • The use of a Bayesian network in the design of a decision support system for growing malting barley without use of pesticides
    • DOI 10.1016/S0168-1699(02)00007-8, PII S0168169902000078
    • Kristensen, K., & Rasmussen, I. A. (2002). The use of a Bayesian network in the design of a decision support system for growing malting barley without use of pesticides. Computers and Electronics in Agriculture, 33(3), 197-217. doi: 10.1016/S0168-1699(02)00007-8. (Pubitemid 34475872)
    • (2002) Computers and Electronics in Agriculture , vol.33 , Issue.3 , pp. 197-217
    • Kristensen, K.1    Rasmussen, I.A.2
  • 55
    • 0001927585 scopus 로고
    • On information and sufficiency
    • doi: 10.1214/aoms/1177729694
    • Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The Annals of Mathematical Statistics, 22(1), 79-86. doi: 10.1214/aoms/1177729694.
    • (1951) The Annals of Mathematical Statistics , vol.22 , Issue.1 , pp. 79-86
    • Kullback, S.1    Leibler, R.A.2
  • 56
    • 3042751892 scopus 로고    scopus 로고
    • Ant colony optimisation and local search for bin packing and cutting stock problems
    • doi: 10.1057/palgrave.jors.2601771
    • Levine, J., & Ducatelle, F. (2004). Ant colony optimisation and local search for bin packing and cutting stock problems. Journal of the Operational Research Society, 55(7), 705-716. doi: 10.1057/palgrave.jors.2601771.
    • (2004) Journal of the Operational Research Society , vol.55 , Issue.7 , pp. 705-716
    • Levine, J.1    Ducatelle, F.2
  • 57
    • 0033312934 scopus 로고    scopus 로고
    • Ant system applied to the quadratic assignment problem
    • DOI 10.1109/69.806935
    • Maniezzo, V., & Colorni, A. (1999). The ant system applied to the quadratic assignment problem. IEEE Transactions on Knowledge and Data Engineering, 11(5), 769-778. doi: 10.1109/69.806935. (Pubitemid 30518732)
    • (1999) IEEE Transactions on Knowledge and Data Engineering , vol.11 , Issue.5 , pp. 769-778
    • Maniezzo Vittorio1    Colorni Alberto2
  • 59
    • 38049025776 scopus 로고    scopus 로고
    • An introduction to genetic algorithms
    • Mitchell, M. (1996). An Introduction to Genetic Algorithms. MIT Press.
    • (1996) MIT Press
    • Mitchell, M.1
  • 60
    • 1942452317 scopus 로고    scopus 로고
    • Optimal reinsertion: A new search operator for accelerated and more accurate Bayesian network structure learning
    • In T. Fawcett, & N. Mishra (Eds.), AAAI Press.
    • Moore, A., & Wong, W.-K. (2003). Optimal reinsertion: A new search operator for accelerated and more accurate Bayesian network structure learning. In T. Fawcett, & N. Mishra (Eds.), Proceedings of the Twentieth International Conference on Machine Learning, (pages 552-559). AAAI Press.
    • (2003) Proceedings of the Twentieth International Conference on Machine Learning , pp. 552-559
    • Moore, A.1    Wong, W.-K.2
  • 61
    • 0031215849 scopus 로고    scopus 로고
    • The equation for response to selection and its use for prediction
    • Mühlenbein, H. (1997). The equation for response to selection and its use for prediction. Evolutionary Computation, 5(3), 303-346. doi: 10.1162/evco.1997.5.3.303. (Pubitemid 127718107)
    • (1997) Evolutionary Computation , vol.5 , Issue.3 , pp. 303-346
    • Muhlenbein, H.1
  • 62
    • 78149329086 scopus 로고    scopus 로고
    • The EQ framework for learning equivalence classes of Bayesian networks
    • IEEE Computer Society. doi: 10.1109/ICDM.2001.989547
    • Munteanu, P., & Bendou, M. (2001). The EQ framework for learning equivalence classes of Bayesian networks. In Proceedings of the 2001 IEEE International Conference on Data Mining, (pages 417-424). IEEE Computer Society. doi: 10.1109/ICDM.2001.989547.
    • (2001) Proceedings of the 2001 IEEE International Conference on Data Mining , pp. 417-424
    • Munteanu, P.1    Bendou, M.2
  • 63
    • 84974731275 scopus 로고    scopus 로고
    • Efficient score-based learning of equivalence classes of Bayesian networks
    • In D. A. Zighed, H. J. Komorowski, & J.M. Zytkow (Eds.),of Lecture Notes in Computer Science, Springer. doi: 10.1007/3-540-45372-5-10
    • Munteanu, P., & Cau, D. (2000). Efficient score-based learning of equivalence classes of Bayesian networks. In D. A. Zighed, H. J. Komorowski, & J. M. Zytkow (Eds.), Proceedings of the Fourth European Conference on the Principles of Data Mining and Knowledge Discovery (PKDD 2000), volume 1910 of Lecture Notes in Computer Science, (pages 96-105). Springer. doi: 10.1007/3-540-45372-5-10.
    • (2000) Proceedings of the Fourth European Conference on the Principles of Data Mining and Knowledge Discovery (PKDD 2000) , vol.1910 , pp. 96-105
    • Munteanu, P.1    Cau, D.2
  • 64
    • 35048878799 scopus 로고    scopus 로고
    • A primer on the evolution of equivalence classes of Bayesian network structures
    • In X. Yao, E. Burke, J. A. Lozano, J. Smith, J. J. Merelo-Guervós, J. A. Bullinaria, J. Rowe, P. Ti?no, A. Kabán, & H.-P. Schwefel (Eds.), of Lecture Notes in Computer Science, Springer. doi: 10.1007/b100601
    • Muruzábal, J., & Cotta, C. (2004). A primer on the evolution of equivalence classes of Bayesian network structures. In X. Yao, E. Burke, J. A. Lozano, J. Smith, J. J. Merelo-Guervós, J. A. Bullinaria, J. Rowe, P. Ti?no, A. Kabán, & H.-P. Schwefel (Eds.), Proceedings of the 8th International Conference on Parallel Problem Solving from Nature -PPSN VIII, volume 3242 of Lecture Notes in Computer Science, (pages 612-621). Springer. doi: 10.1007/b100601.
    • (2004) Proceedings of the 8th International Conference on Parallel Problem Solving from Nature -PPSN VIII , vol.3242 , pp. 612-621
    • Muruzábal, J.1    Cotta, C.2
  • 67
    • 13444275705 scopus 로고    scopus 로고
    • Finding optimal gene networks using biological constraints
    • Ott, S., & Miyano, S. (2003). Finding optimal gene networks using biological constraints. Genome Informatics, 14, 124-133.
    • (2003) Genome Informatics , vol.14 , pp. 124-133
    • Ott, S.1    Miyano, S.2
  • 69
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • doi: 10.1214/aos/1176344136
    • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461-464. doi: 10.1214/aos/1176344136.
    • (1978) The Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 70
    • 79958840081 scopus 로고    scopus 로고
    • Evaluating the causal explanatory value of Bayesian network structure learning algorithms
    • Department of Computer Science, University of Massachusetts Lowell
    • Shaughnessy, P., & Livingston, G. (2005). Evaluating the causal explanatory value of Bayesian network structure learning algorithms. Research Paper 2005-2013, Department of Computer Science, University of Massachusetts Lowell.
    • (2005) Research Paper 2005-2013
    • Shaughnessy, P.1    Livingston, G.2
  • 71
    • 0028483915 scopus 로고
    • Finding maps for belief networks is NP-hard
    • doi: 10.1016/0004-3702(94)90072-90078
    • Shimony, S. E. (1994). Finding maps for belief networks is NP-hard. Artificial Intelligence, 68(2), 399-410. doi: 10.1016/0004-3702(94)90072-90078
    • (1994) Artificial Intelligence , vol.68 , Issue.2 , pp. 399-410
    • Shimony, S.E.1
  • 73
    • 68349087665 scopus 로고
    • An algorithm for fast recovery of sparse causal graphs
    • Department of Philosophy, Carnegie Mellon University
    • Spirtes, P., & Glymour, C. (1990). An algorithm for fast recovery of sparse causal graphs. Report CMU-PHIL-15, Department of Philosophy, Carnegie Mellon University.
    • (1990) Report CMU-PHIL-15
    • Spirtes, P.1    Glymour, C.2
  • 76
    • 84899020081 scopus 로고    scopus 로고
    • On the Dirichlet prior and Bayesian regularization
    • In S. Becker, S. Thrun, & K. Obermayer (Eds.), The MIT Press
    • Steck, H., & Jaakkola, T. S. (2003). On the Dirichlet prior and Bayesian regularization. In S. Becker, S. Thrun, & K. Obermayer (Eds.), Advances in Neural Information Processing Systems 15 (NIPS*2002), (pages 697-704). The MIT Press.
    • (2003) Advances in Neural Information Processing Systems 15 (NIPS*2002) , pp. 697-704
    • Steck, H.1    Jaakkola, T.S.2
  • 79
    • 33746035971 scopus 로고    scopus 로고
    • The max-min hill-climbing Bayesian network structure learning algorithm
    • DOI 10.1007/s10994-006-6889-7
    • Tsamardinos, I., Brown, L. E., & Aliferis, C. F. (2006). The max-min hill-climbing Bayesian network structure learning algorithm. Machine Learning, 65(1), 31-78. doi: 10.1007/s10994-006-6889-7. (Pubitemid 44451193)
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.E.2    Aliferis, C.F.3
  • 80
    • 3242765279 scopus 로고    scopus 로고
    • A bias-variance analysis of a real world learning problem: The coil challenge 2000
    • doi: 10.1023/B: MACH.0000035476.95130.99
    • van der Putten, P., & van Someren, M. (2004).A bias-variance analysis of a real world learning problem: The coil challenge 2000.Machine Learning, 57(1-2), 177-195. doi: 10.1023/B: MACH.0000035476.95130.99.
    • (2004) Machine Learning , vol.57 , Issue.1-2 , pp. 177-195
    • Van Der Putten, P.1    Van Someren, M.2
  • 81
    • 0002095306 scopus 로고
    • Equivalence and synthesis of causal models
    • In P. Bonissone, M. Henrion, L. Kanal, & J. Lemmer (Eds.), North-Holland
    • Verma, T., & Pearl, J. (1991). Equivalence and synthesis of causal models. In P. Bonissone, M. Henrion, L. Kanal, & J. Lemmer (Eds.), Uncertainty in Artificial Intelligence 6, (pages 255-268). North-Holland.
    • (1991) Uncertainty in Artificial Intelligence 6 , pp. 255-268
    • Verma, T.1    Pearl, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.