메뉴 건너뛰기




Volumn 14, Issue 3, 2009, Pages 433-442

Investigation of expert rule bases, logistic regression, and non-linear machine learning techniques for predicting response to antiretroviral treatment

Author keywords

[No Author keywords available]

Indexed keywords

ANTIVIRAL THERAPY; AREA UNDER THE CURVE; ARTICLE; COMPUTER PREDICTION; DECISION SUPPORT SYSTEM; DRUG RESPONSE; HUMAN IMMUNODEFICIENCY VIRUS 1 INFECTION; INTERMETHOD COMPARISON; LEARNING ALGORITHM; LOGISTIC REGRESSION ANALYSIS; MACHINE LEARNING; NONLINEAR SYSTEM; PREDICTION; PRIORITY JOURNAL; REFERENCE DATABASE; STATISTICAL ANALYSIS; STATISTICAL MODEL; VIRUS GENOME;

EID: 67649191714     PISSN: 13596535     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (44)

References (50)
  • 1
    • 0032576426 scopus 로고    scopus 로고
    • Changing patterns of mortality across Europe in patients infected with HIV-1
    • Mocroft A, Vella S, Benfield TL, et al. Changing patterns of mortality across Europe in patients infected with HIV-1. Lancet 1998; 352:1725-1730
    • (1998) Lancet , vol.352 , pp. 1725-1730
    • Mocroft, A.1    Vella, S.2    Benfield, T.L.3
  • 2
    • 0035912249 scopus 로고    scopus 로고
    • HIV chemotherapy
    • Richman DD. HIV chemotherapy. Nature 2001; 410:995-1001.
    • (2001) Nature , vol.410 , pp. 995-1001
    • Richman, D.D.1
  • 3
    • 39649105458 scopus 로고    scopus 로고
    • Hide-and-seek: The challenge of viral persistence in HIV-1 infection
    • Geeraert L, Kraus G, Pomerantz RJ. Hide-and-seek: the challenge of viral persistence in HIV-1 infection. Annu Rev Med 2008; 59:487-501.
    • (2008) Annu Rev Med , vol.59 , pp. 487-501
    • Geeraert, L.1    Kraus, G.2    Pomerantz, R.J.3
  • 4
    • 21844462147 scopus 로고    scopus 로고
    • Multiple drug class-wide resistance associated with poorer survival after treatment failure in a cohort of HIV-infected patients
    • Zaccarelli M, Tozzi Y, Lorenzini P, et al. Multiple drug class-wide resistance associated with poorer survival after treatment failure in a cohort of HIV-infected patients. AIDS 2005; 19:1081-1089.
    • (2005) AIDS , vol.19 , pp. 1081-1089
    • Zaccarelli, M.1    Tozzi, Y.2    Lorenzini, P.3
  • 5
    • 35748933494 scopus 로고    scopus 로고
    • Update of the drug resistance mutation in HIV-1: 2007
    • Johnson VA, Brun-Vezinet F, Clotet B et al. Update of the drug resistance mutation in HIV-1: 2007. Top HIV Med 2007; 15:119-125.
    • (2007) Top HIV Med , vol.15 , pp. 119-125
    • Johnson, V.A.1    Brun-Vezinet, F.2    Clotet, B.3
  • 6
    • 33747150776 scopus 로고    scopus 로고
    • Algorithms for the interpretation of HIV-1 genotypic drug resistance information
    • Vercauteren J, Vandamme AM. Algorithms for the interpretation of HIV-1 genotypic drug resistance information. Antiviral Res 2006; 71:335-342.
    • (2006) Antiviral Res , vol.71 , pp. 335-342
    • Vercauteren, J.1    Vandamme, A.M.2
  • 7
    • 0043092351 scopus 로고    scopus 로고
    • Geno2pheno: Estimating phenotypic drug resistance from HIV-1 genotypes
    • Beerenwinkel N, Daumer M, Oette M, et al. Geno2pheno: estimating phenotypic drug resistance from HIV-1 genotypes. Nucleic Acids Res 2003; 31:3850-3855.
    • (2003) Nucleic Acids Res , vol.31 , pp. 3850-3855
    • Beerenwinkel, N.1    Daumer, M.2    Oette, M.3
  • 8
    • 33646769915 scopus 로고    scopus 로고
    • Interereting resistance data for HIV-1 therapy management - now the limitations
    • Van Laethem K, Vandamme AM. Interereting resistance data for HIV-1 therapy management - now the limitations. AIDS Rev 2006; 8:37-43.
    • (2006) AIDS Rev , vol.8 , pp. 37-43
    • Van Laethem, K.1    Vandamme, A.M.2
  • 9
    • 33646744181 scopus 로고    scopus 로고
    • Web resources for HIV type 1 genotypic-resistance test interpretation
    • Liu TF, Shafer RW. Web resources for HIV type 1 genotypic-resistance test interpretation. Clin infect Dis 2006; 42:1608-1618.
    • (2006) Clin infect Dis , vol.42 , pp. 1608-1618
    • Liu, T.F.1    Shafer, R.W.2
  • 10
    • 4344701042 scopus 로고    scopus 로고
    • Clinically validated genotype analysis: Guiding principles and statistical concerns
    • Brun-Vézinet E Costagliola D, Khaled MA, et al. Clinically validated genotype analysis: guiding principles and statistical concerns. Antivir Ther 2004; 9:465-478.
    • (2004) Antivir Ther , vol.9 , pp. 465-478
    • Brun-Vézinet, E.1    Costagliola, D.2    Khaled, M.A.3
  • 11
    • 0042154495 scopus 로고    scopus 로고
    • Comparison of nine resistance interpretation systems for HIV-1 genotyping
    • Stürmer M, Doerr HW, Staszewski S, Preiser W. Comparison of nine resistance interpretation systems for HIV-1 genotyping. Antivir Ther 2003; 8:239-244.
    • (2003) Antivir Ther , vol.8 , pp. 239-244
    • Stürmer, M.1    Doerr, H.W.2    Staszewski, S.3    Preiser, W.4
  • 12
    • 0037847549 scopus 로고    scopus 로고
    • HIV-1 protease and reverse transcriptase mutation patterns responsible for discordances between genotypic drug resistance interpretation algorithms
    • Ravela J, Betts BJ, Brun-Vézinet F, et al. HIV-1 protease and reverse transcriptase mutation patterns responsible for discordances between genotypic drug resistance interpretation algorithms. J Acquir Immune Defic Syndr 2003; 33:8-14.
    • (2003) J Acquir Immune Defic Syndr , vol.33 , pp. 8-14
    • Ravela, J.1    Betts, B.J.2    Brun-Vézinet, F.3
  • 13
    • 31944440917 scopus 로고    scopus 로고
    • Discordances between interpretation algorithms for genotypic resistance to protease and reverse transcriptase inhibitors of human immunodeficiency virus are subtype dependent
    • Snoeck J, Kantor R, Vandamme AM, et al. Discordances between interpretation algorithms for genotypic resistance to protease and reverse transcriptase inhibitors of human immunodeficiency virus are subtype dependent. Antimicrob Agents Chemother 2006; 50:694-701.
    • (2006) Antimicrob Agents Chemother , vol.50 , pp. 694-701
    • Snoeck, J.1    Kantor, R.2    Vandamme, A.M.3
  • 14
    • 33847375483 scopus 로고    scopus 로고
    • The development of artificial neural networks to predict virological response to combination HIV therapy
    • Larder B, Wang D, Revell A, et al. The development of artificial neural networks to predict virological response to combination HIV therapy. Antivir Ther 2007; 12:15-24.
    • (2007) Antivir Ther , vol.12 , pp. 15-24
    • Larder, B.1    Wang, D.2    Revell, A.3
  • 15
    • 4344714256 scopus 로고    scopus 로고
    • Construction, training and clinical validation of an imerpretation system for genotypic HIV-1 drug resistance based on fuzzy rules revised by virological outcomes
    • De Luca A, Ulivi G, Vendittelli M, et al. Construction, training and clinical validation of an imerpretation system for genotypic HIV-1 drug resistance based on fuzzy rules revised by virological outcomes. Antivir Ther 2004; 9:583-593.
    • (2004) Antivir Ther , vol.9 , pp. 583-593
    • De Luca, A.1    Ulivi, G.2    Vendittelli, M.3
  • 16
    • 38049064544 scopus 로고    scopus 로고
    • Evolutionary fuzzy modelling for drug resistant HIV-1 treatment optimisation
    • Abraham A, Grosan C, Pedrycz W Editors, Heidelberg: Springer Berlin
    • Prosperi M, Ulivi G. Evolutionary fuzzy modelling for drug resistant HIV-1 treatment optimisation. In Abraham A, Grosan C, Pedrycz W (Editors). Engineering evolutionary intelligent systems: studies in computational intelligence. Heidelberg: Springer Berlin 2008; pp. 251-287.
    • (2008) Engineering evolutionary intelligent systems: Studies in computational intelligence , pp. 251-287
    • Prosperi, M.1    Ulivi, G.2
  • 17
    • 34147145974 scopus 로고    scopus 로고
    • Improved prediction of response to antiretroviral combination therapy using the genetic barrier to drug resistance
    • Altmann A, Beerenwinkel N, Sing T, et al. Improved prediction of response to antiretroviral combination therapy using the genetic barrier to drug resistance. Antivir Ther 2007; 12:169-178.
    • (2007) Antivir Ther , vol.12 , pp. 169-178
    • Altmann, A.1    Beerenwinkel, N.2    Sing, T.3
  • 18
    • 37549044257 scopus 로고    scopus 로고
    • Estimation of an in vivo fitness landscape experienced by HIV-1 under drug selective pressure useful for prediction of drug resistance evolution during treatment
    • Deforche K, Camacho R, Van Laethern K, et al. Estimation of an in vivo fitness landscape experienced by HIV-1 under drug selective pressure useful for prediction of drug resistance evolution during treatment. Bioinformatics 2008; 24:34-41.
    • (2008) Bioinformatics , vol.24 , pp. 34-41
    • Deforche, K.1    Camacho, R.2    Van Laethern, K.3
  • 19
    • 46249127515 scopus 로고    scopus 로고
    • Selecting anti-HIV therapies based on a variety of genomic and clinical factors
    • Rosen-Zvi M, Altmann A, Prosperi M, et al. Selecting anti-HIV therapies based on a variety of genomic and clinical factors. Bioinformatics 2008; 24:i399-i406.
    • (2008) Bioinformatics , vol.24
    • Rosen-Zvi, M.1    Altmann, A.2    Prosperi, M.3
  • 20
    • 38349060626 scopus 로고    scopus 로고
    • Initiatives for developing and comparing genotype interpretation systems: External validation of existing rule-based interpretation systems for abacavir against virological response
    • Cozzi-Lepri A. Initiatives for developing and comparing genotype interpretation systems: external validation of existing rule-based interpretation systems for abacavir against virological response. HIV Med 2008; 9:27-40.
    • (2008) HIV Med , vol.9 , pp. 27-40
    • Cozzi-Lepri, A.1
  • 21
    • 0025183708 scopus 로고
    • Basic local alignment search tool
    • Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol 1990; 215:403-410.
    • (1990) J Mol Biol , vol.215 , pp. 403-410
    • Altschul, S.F.1    Gish, W.2    Miller, W.3
  • 22
    • 67649191085 scopus 로고    scopus 로고
    • Leitner T, Korber B, Daniels M, Calef C, Foley B. HIV-1 subtype and circulating recombinant form (CRF) reference sequences, 2005. Los amos National Laboratory, Los Alamos NM USA (dated 9 September 2007. Accessed 8 May 2009.) Available From http://www.hiv.lanl.gov/content/ sequence/HIV/REVIEWS/RefSeqs2005/RefSeqs05.html
    • Leitner T, Korber B, Daniels M, Calef C, Foley B. HIV-1 subtype and circulating recombinant form (CRF) reference sequences, 2005. Los amos National Laboratory, Los Alamos NM USA (dated 9 September 2007. Accessed 8 May 2009.) Available From http://www.hiv.lanl.gov/content/ sequence/HIV/REVIEWS/RefSeqs2005/RefSeqs05.html
  • 23
    • 0019887799 scopus 로고
    • Identification of common molecular subsequences
    • Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol 1981; 147:195-197.
    • (1981) J Mol Biol , vol.147 , pp. 195-197
    • Smith, T.F.1    Waterman, M.S.2
  • 24
    • 0020484488 scopus 로고
    • An improved algorithm for matching biological sequences
    • Gotoh O. An improved algorithm for matching biological sequences. J Mol Biol 1982; 162:705-708.
    • (1982) J Mol Biol , vol.162 , pp. 705-708
    • Gotoh, O.1
  • 25
    • 0000521473 scopus 로고
    • Ridge estimators in logistic regression
    • Le Cessi S, Van Houwelingen JC. Ridge estimators in logistic regression. Appl Stat 1992; 41:1 91-201.
    • (1992) Appl Stat , vol.41 , Issue.1 , pp. 91-201
    • Le Cessi, S.1    Van Houwelingen, J.C.2
  • 27
  • 32
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R. Wrappers for feature subset selection. Artificial Intelligence 1997; 97:273-324
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1
  • 34
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. IEEE Trans Automat Contr 1974; 19:716-723.
    • (1974) IEEE Trans Automat Contr , vol.19 , pp. 716-723
    • Akaike, H.1
  • 35
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett 2006; 27:861-874.
    • (2006) Pattern Recognit Lett , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 36
    • 0042847140 scopus 로고    scopus 로고
    • Inference for the generalisation error
    • Nadeau C, Bengio Y. Inference for the generalisation error. Machine Learning 2003; 52:239-281.
    • (2003) Machine Learning , vol.52 , pp. 239-281
    • Nadeau, C.1    Bengio, Y.2
  • 37
    • 5344244656 scopus 로고    scopus 로고
    • R Development Core Team, Vienna: R Foundation for Statistical Computing
    • R Development Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing 2008.
    • (2008) R: A language and environment for statistical computing
  • 39
    • 0030070991 scopus 로고    scopus 로고
    • Prognosis in HIV-1 infection predicted by the quantity of virus in plasma
    • Mellors JW, Rinaldo CR, Jr, Gupta P, et al. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 1996; 272:1167-1170.
    • (1996) Science , vol.272 , pp. 1167-1170
    • Mellors, J.W.1    Rinaldo Jr, C.R.2    Gupta, P.3
  • 40
    • 34447325943 scopus 로고    scopus 로고
    • The relation between symptoms, viral load, and viral load set point in primary HIV infection
    • Kelley CF, Barbour JD, Hecht FM. The relation between symptoms, viral load, and viral load set point in primary HIV infection. J Acquir Immune Defic Syndr 2007; 45:445-448.
    • (2007) J Acquir Immune Defic Syndr , vol.45 , pp. 445-448
    • Kelley, C.F.1    Barbour, J.D.2    Hecht, F.M.3
  • 41
    • 0037277969 scopus 로고    scopus 로고
    • Surrogate markets as a guide to evaluate response to antiretroviral therapy
    • De Milito A, Titanji K, Zazzi M. Surrogate markets as a guide to evaluate response to antiretroviral therapy. Curr Med Chem 2003; 10:349-365.
    • (2003) Curr Med Chem , vol.10 , pp. 349-365
    • De Milito, A.1    Titanji, K.2    Zazzi, M.3
  • 42
    • 3042842613 scopus 로고    scopus 로고
    • Predictors of immunological failure after initial response to highly active antiretroviral therapy in HIV-1-infected adults: A EuroSIDA study
    • Dragsted UB, Mocroft A, Vella S, et al. Predictors of immunological failure after initial response to highly active antiretroviral therapy in HIV-1-infected adults: a EuroSIDA study. J Infect Dis 2004; 190:148-155.
    • (2004) J Infect Dis , vol.190 , pp. 148-155
    • Dragsted, U.B.1    Mocroft, A.2    Vella, S.3
  • 43
    • 34547122864 scopus 로고    scopus 로고
    • Predictors of virological outcome and safety in primary HIV type 1-infected patients initiating quadruple antiretroviral therapy: QUEST GW PROB3005
    • Hoen B, Cooper DA, Lampe FC, et al. Predictors of virological outcome and safety in primary HIV type 1-infected patients initiating quadruple antiretroviral therapy: QUEST GW PROB3005. Clin Infect Dis 2007; 45:381-390.
    • (2007) Clin Infect Dis , vol.45 , pp. 381-390
    • Hoen, B.1    Cooper, D.A.2    Lampe, F.C.3
  • 44
    • 33846411810 scopus 로고    scopus 로고
    • + lymphocytes are independent predictors of disease progression in HIV-infected persons initiating highly active antiretroviral therapy
    • + lymphocytes are independent predictors of disease progression in HIV-infected persons initiating highly active antiretroviral therapy. J Infect Dis 2007; 195:425-431.
    • (2007) J Infect Dis , vol.195 , pp. 425-431
    • Hulgan, T.1    Shepherd, B.E.2    Raffanti, S.P.3
  • 45
    • 33745834365 scopus 로고    scopus 로고
    • Rogers J, Gunn S. Identifying feature relevance using a random forest. In Saunders C, Grobelnik M, Gunn S, Shawe-Taylor J (Editors). Lecture notes in computer science: theoretical computer science and general issues. 3940. Subspace, latent structure and feature selection. Heidelberg: Springer 2006.
    • Rogers J, Gunn S. Identifying feature relevance using a random forest. In Saunders C, Grobelnik M, Gunn S, Shawe-Taylor J (Editors). Lecture notes in computer science: theoretical computer science and general issues. Vol. 3940. Subspace, latent structure and feature selection. Heidelberg: Springer 2006.
  • 46
    • 67649145173 scopus 로고    scopus 로고
    • Breen R. Regression models: censored, sample selected or truncated data. In Dickens G (Editor). Quantitative applications in the social sciences. 111. Thousand Oaks, CA: SAGE Publications, Inc. 1996.
    • Breen R. Regression models: censored, sample selected or truncated data. In Dickens G (Editor). Quantitative applications in the social sciences. Vol. 111. Thousand Oaks, CA: SAGE Publications, Inc. 1996.
  • 47
    • 34548134145 scopus 로고    scopus 로고
    • A whole-genome association study of major determinants for host control of HIV-1
    • Fellay J, Shianna KV, Ge D, et al. A whole-genome association study of major determinants for host control of HIV-1. Science 2007; 317:944-947.
    • (2007) Science , vol.317 , pp. 944-947
    • Fellay, J.1    Shianna, K.V.2    Ge, D.3
  • 48
    • 33750283266 scopus 로고    scopus 로고
    • Human genetic variability add HIV treatment response
    • Haas DW. Human genetic variability add HIV treatment response. Curr HIV/AIDS Rep 2006; 3:53-58.
    • (2006) Curr HIV/AIDS Rep , vol.3 , pp. 53-58
    • Haas, D.W.1
  • 49
    • 54949085407 scopus 로고    scopus 로고
    • Comparison of classifier fusion methods for predicting response to anti HIV-1 therapy
    • Altmann A, Rosen-Zvi M, Prosperi M, et al. Comparison of classifier fusion methods for predicting response to anti HIV-1 therapy. PLoS One 2008; 3:e3470.
    • (2008) PLoS One , vol.3
    • Altmann, A.1    Rosen-Zvi, M.2    Prosperi, M.3
  • 50
    • 67649156795 scopus 로고    scopus 로고
    • The EuResist Network. EuResist prediction engine. (Accessed 8 May 2009.) Available from http://engine.euresist.org
    • The EuResist Network. EuResist prediction engine. (Accessed 8 May 2009.) Available from http://engine.euresist.org


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.