-
1
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting and variants
-
Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging, boosting and variants. Machine Learning, 36:1/2, 105-142.
-
(1999)
Machine Learning
, vol.36
, Issue.1-2
, pp. 105-142
-
-
Bauer, E.1
Kohavi, R.2
-
2
-
-
0030211964
-
Bagging predictors
-
Breiman, L. (1996a). Bagging predictors. Machine Learning, 24:2, 123-140.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
3
-
-
0004158427
-
Arcing classifiers
-
Department of Statistics, University of California, Berkeley, CA.
-
Breiman, L. (1996b). Arcing classifiers. Technical Report 460, Department of Statistics, University of California, Berkeley, CA.
-
(1996)
Technical Report
, vol.460
-
-
Breiman, L.1
-
4
-
-
0003465202
-
The SimpleScalar tool set, version 2.0
-
Department of Computer Science, University of Wisconsin-Madison.
-
Burger, D., & Austin, T. (1997). The SimpleScalar tool set, version 2.0. Technical Report 1342, Department of Computer Science, University of Wisconsin-Madison.
-
(1997)
Technical Report
, vol.1342
-
-
Burger, D.1
Austin, T.2
-
5
-
-
0030784721
-
Evidence-based static branch prediction using machine learning
-
Calder, B., Grunwald, D., Lindsay, D., Jones, M., Martin, J., Mozer, M., & Zorn, B. (1997). Evidence-based static branch prediction using machine learning. ACM Transactions on Programming Languages and Systems, 19:1, 188-222.
-
(1997)
ACM Transactions on Programming Languages and Systems
, vol.19
, Issue.1
, pp. 188-222
-
-
Calder, B.1
Grunwald, D.2
Lindsay, D.3
Jones, M.4
Martin, J.5
Mozer, M.6
Zorn, B.7
-
7
-
-
0141946665
-
Arithmetic circuits
-
Cambridge, MA: MIT Press
-
Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (1997). Arithmetic circuits. In Introduction to Algorithms. Cambridge, MA: MIT Press.
-
(1997)
In Introduction to Algorithms
-
-
Cormen, T.H.1
Leiserson, C.E.2
Rivest, R.L.3
-
8
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
Dietterich, T. G. (2000). An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40:2, 139-158.
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 139-158
-
-
Dietterich, T.G.1
-
12
-
-
0001141579
-
The application of AdaBoost for distributed, scalable and on-line learning
-
Fan, W., Stolfo, S., & Zhang, J. (1999). The application of AdaBoost for distributed, scalable and on-line learning. In Proceedings of the Fifth SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 362-366).
-
(1999)
In Proceedings of the Fifth SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 362-366
-
-
Fan, W.1
Stolfo, S.2
Zhang, J.3
-
13
-
-
0006705042
-
Dynamic feature selection for hardware prediction
-
Purdue University
-
Fern, A., Givan, R., Falsafi, B., & Vijaykumar, T.N. (2000). Dynamic feature selection for hardware prediction. Technical Report TR-ECE 00-12, School of Electrical & Computer Engineering, Purdue University.
-
(2000)
Technical Report TR-ECE 00-12, School of Electrical & Computer Engineering
-
-
Fern, A.1
Givan, R.2
Falsafi, B.3
Vijaykumar, T.N.4
-
14
-
-
58149321460
-
Boosting a weak learning algorithm by majority
-
Freund, Y. (1995). Boosting a weak learning algorithm by majority. Information and Computation, 121:2, 256-285.
-
(1995)
Information and Computation
, vol.121
, Issue.2
, pp. 256-285
-
-
Freund, Y.1
-
16
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund, Y., & Schapire, R.E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55:1, 119-139.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
26
-
-
33744584654
-
Induction of decision trees
-
Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81-106.
-
(1986)
Machine Learning
, vol.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
31
-
-
0025448521
-
The strength of weak learnability
-
Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5:2, 197-227.
-
(1990)
Machine Learning
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.E.1
-
33
-
-
77952642202
-
Incremental induction of decision trees
-
Utgoff, P. E. (1989). Incremental induction of decision trees. Machine Learning, 4:2, 161-186.
-
(1989)
Machine Learning
, vol.4
, Issue.2
, pp. 161-186
-
-
Utgoff, P.E.1
-
34
-
-
0031246271
-
Decision tree induction based on efficient tree restructuring
-
Utgoff, P. E., Berkman, N. C., & Clouse, J. A. (1997). Decision tree induction based on efficient tree restructuring. Machine Learning, 29:1, 5-44.
-
(1997)
Machine Learning
, vol.29
, Issue.1
, pp. 5-44
-
-
Utgoff, P.E.1
Berkman, N.C.2
Clouse, J.A.3
|