메뉴 건너뛰기




Volumn 53, Issue 1-2, 2003, Pages 71-109

Online Ensemble Learning: An Empirical Study

Author keywords

Bagging; Boosting; Branch prediction; Decision trees; Ensemble learning; Online learning

Indexed keywords

ALGORITHMS; BENCHMARKING; COMPUTER ARCHITECTURE; MICROPROCESSOR CHIPS; TREES (MATHEMATICS);

EID: 0141921552     PISSN: 08856125     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1025619426553     Document Type: Article
Times cited : (99)

References (34)
  • 1
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting and variants
    • Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging, boosting and variants. Machine Learning, 36:1/2, 105-142.
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-142
    • Bauer, E.1    Kohavi, R.2
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996a). Bagging predictors. Machine Learning, 24:2, 123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 3
    • 0004158427 scopus 로고    scopus 로고
    • Arcing classifiers
    • Department of Statistics, University of California, Berkeley, CA.
    • Breiman, L. (1996b). Arcing classifiers. Technical Report 460, Department of Statistics, University of California, Berkeley, CA.
    • (1996) Technical Report , vol.460
    • Breiman, L.1
  • 4
    • 0003465202 scopus 로고    scopus 로고
    • The SimpleScalar tool set, version 2.0
    • Department of Computer Science, University of Wisconsin-Madison.
    • Burger, D., & Austin, T. (1997). The SimpleScalar tool set, version 2.0. Technical Report 1342, Department of Computer Science, University of Wisconsin-Madison.
    • (1997) Technical Report , vol.1342
    • Burger, D.1    Austin, T.2
  • 8
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich, T. G. (2000). An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40:2, 139-158.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-158
    • Dietterich, T.G.1
  • 14
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Freund, Y. (1995). Boosting a weak learning algorithm by majority. Information and Computation, 121:2, 256-285.
    • (1995) Information and Computation , vol.121 , Issue.2 , pp. 256-285
    • Freund, Y.1
  • 16
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y., & Schapire, R.E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55:1, 119-139.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 26
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81-106.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 31
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5:2, 197-227.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 33
    • 77952642202 scopus 로고
    • Incremental induction of decision trees
    • Utgoff, P. E. (1989). Incremental induction of decision trees. Machine Learning, 4:2, 161-186.
    • (1989) Machine Learning , vol.4 , Issue.2 , pp. 161-186
    • Utgoff, P.E.1
  • 34
    • 0031246271 scopus 로고    scopus 로고
    • Decision tree induction based on efficient tree restructuring
    • Utgoff, P. E., Berkman, N. C., & Clouse, J. A. (1997). Decision tree induction based on efficient tree restructuring. Machine Learning, 29:1, 5-44.
    • (1997) Machine Learning , vol.29 , Issue.1 , pp. 5-44
    • Utgoff, P.E.1    Berkman, N.C.2    Clouse, J.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.