메뉴 건너뛰기




Volumn 34, Issue 5, 2009, Pages 256-263

Deconstructing ribosome construction

Author keywords

[No Author keywords available]

Indexed keywords

GUANOSINE TRIPHOSPHATASE; HYDROXYL RADICAL; RIBONUCLEOPROTEIN; RIBOSOME PROTEIN; TRANSFER RNA;

EID: 65549161515     PISSN: 09680004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibs.2009.01.011     Document Type: Review
Times cited : (73)

References (81)
  • 1
    • 0034637111 scopus 로고    scopus 로고
    • The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution
    • Ban N., et al. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289 (2000) 905-920
    • (2000) Science , vol.289 , pp. 905-920
    • Ban, N.1
  • 2
    • 27644491082 scopus 로고    scopus 로고
    • Structures of the bacterial ribosome at 3.5 Å resolution
    • Schuwirth B.S., et al. Structures of the bacterial ribosome at 3.5 Å resolution. Science 310 (2005) 827-834
    • (2005) Science , vol.310 , pp. 827-834
    • Schuwirth, B.S.1
  • 3
    • 0034699518 scopus 로고    scopus 로고
    • Structure of the 30S ribosomal subunit
    • Wimberly B.T., et al. Structure of the 30S ribosomal subunit. Nature 407 (2000) 327-339
    • (2000) Nature , vol.407 , pp. 327-339
    • Wimberly, B.T.1
  • 4
    • 34548728025 scopus 로고    scopus 로고
    • Ribosome biogenesis and the translation process in Escherichia coli
    • Kaczanowska M., and Ryden-Aulin M. Ribosome biogenesis and the translation process in Escherichia coli. Microbiol. Mol. Biol. Rev. 71 (2007) 477-494
    • (2007) Microbiol. Mol. Biol. Rev. , vol.71 , pp. 477-494
    • Kaczanowska, M.1    Ryden-Aulin, M.2
  • 5
    • 0016153699 scopus 로고
    • Assembly mapping of 30S ribosomal proteins from Escherichia coli. Further studies
    • Held W.A., et al. Assembly mapping of 30S ribosomal proteins from Escherichia coli. Further studies. J. Biol. Chem 249 (1974) 3103-3111
    • (1974) J. Biol. Chem , vol.249 , pp. 3103-3111
    • Held, W.A.1
  • 6
    • 0015793219 scopus 로고
    • Rate determining step in the reconstitution of Escherichia coli 30S ribosomal subunits
    • Held W.A., and Nomura M. Rate determining step in the reconstitution of Escherichia coli 30S ribosomal subunits. Biochemistry 12 (1973) 3273-3281
    • (1973) Biochemistry , vol.12 , pp. 3273-3281
    • Held, W.A.1    Nomura, M.2
  • 8
    • 0037319895 scopus 로고    scopus 로고
    • Assembly of the 30S ribosomal subunit
    • Culver G.M. Assembly of the 30S ribosomal subunit. Biopolymers 68 (2003) 234-249
    • (2003) Biopolymers , vol.68 , pp. 234-249
    • Culver, G.M.1
  • 10
    • 84962978100 scopus 로고    scopus 로고
    • Bacterial ribosomes: Assembly
    • DOI:10.1038/npg.els.0003947, John Wiley & Sons
    • Nierhaus, K.H. (2005) Bacterial ribosomes: assembly. In Encyclopedia of Life Sciences, DOI:10.1038/npg.els.0003947, John Wiley & Sons. (http://mrw.interscience.wiley.com/emrw/9780470015902/home/)
    • (2005) Encyclopedia of Life Sciences
    • Nierhaus, K.H.1
  • 11
    • 57549118722 scopus 로고    scopus 로고
    • RNA folding and ribosome assembly
    • Woodson S.A. RNA folding and ribosome assembly. Curr. Opin. Chem. Biol. 12 (2008) 667-673
    • (2008) Curr. Opin. Chem. Biol. , vol.12 , pp. 667-673
    • Woodson, S.A.1
  • 12
    • 9344244718 scopus 로고    scopus 로고
    • Assembly of the 30S ribosomal subunit: positioning ribosomal protein S13 in the S7 assembly branch
    • Grondek J.F., and Culver G.M. Assembly of the 30S ribosomal subunit: positioning ribosomal protein S13 in the S7 assembly branch. RNA 10 (2004) 1861-1866
    • (2004) RNA , vol.10 , pp. 1861-1866
    • Grondek, J.F.1    Culver, G.M.2
  • 13
    • 0006002144 scopus 로고
    • Assembly map of the large subunit (50S) of Escherichia coli ribosomes
    • Rohl R., and Nierhaus K.H. Assembly map of the large subunit (50S) of Escherichia coli ribosomes. Proc. Natl. Acad. Sci. U. S. A. 79 (1982) 729-733
    • (1982) Proc. Natl. Acad. Sci. U. S. A. , vol.79 , pp. 729-733
    • Rohl, R.1    Nierhaus, K.H.2
  • 14
    • 55249084867 scopus 로고    scopus 로고
    • Concurrent nucleation of 16S folding and induced fit in 30S ribosome assembly
    • Adilakshmi T., et al. Concurrent nucleation of 16S folding and induced fit in 30S ribosome assembly. Nature 455 (2008) 1268-1272
    • (2008) Nature , vol.455 , pp. 1268-1272
    • Adilakshmi, T.1
  • 15
    • 0023688660 scopus 로고
    • Assembly of the 30S subunit from Escherichia coli ribosomes occurs via two assembly domains which are initiated by S4 and S7
    • Nowotny V., and Nierhaus K.H. Assembly of the 30S subunit from Escherichia coli ribosomes occurs via two assembly domains which are initiated by S4 and S7. Biochemistry 27 (1988) 7051-7055
    • (1988) Biochemistry , vol.27 , pp. 7051-7055
    • Nowotny, V.1    Nierhaus, K.H.2
  • 16
    • 28444479853 scopus 로고    scopus 로고
    • An assembly landscape for the 30S ribosomal subunit
    • Talkington M.W., et al. An assembly landscape for the 30S ribosomal subunit. Nature 438 (2005) 628-632
    • (2005) Nature , vol.438 , pp. 628-632
    • Talkington, M.W.1
  • 17
    • 42449098958 scopus 로고    scopus 로고
    • Characterization of a 30S ribosomal subunit assembly intermediate found in Escherichia coli cells growing with neomycin or paromomycin
    • Foster C., and Champney W.S. Characterization of a 30S ribosomal subunit assembly intermediate found in Escherichia coli cells growing with neomycin or paromomycin. Arch. Microbiol. 189 (2008) 441-449
    • (2008) Arch. Microbiol. , vol.189 , pp. 441-449
    • Foster, C.1    Champney, W.S.2
  • 18
    • 0014528642 scopus 로고
    • Structure and function of E. coli ribosomes. 8. Cold-sensitive mutants defective in ribosome assembly
    • Guthrie C., et al. Structure and function of E. coli ribosomes. 8. Cold-sensitive mutants defective in ribosome assembly. Proc. Natl. Acad. Sci. U. S. A 63 (1969) 384-391
    • (1969) Proc. Natl. Acad. Sci. U. S. A , vol.63 , pp. 384-391
    • Guthrie, C.1
  • 19
    • 0015243809 scopus 로고
    • Structure and function of bacterial ribosomes. XII. Accumulation of 21 s particles by some cold-sensitive mutants of Escherichia coli
    • Nashimoto H., et al. Structure and function of bacterial ribosomes. XII. Accumulation of 21 s particles by some cold-sensitive mutants of Escherichia coli. J. Mol. Biol 62 (1971) 121-138
    • (1971) J. Mol. Biol , vol.62 , pp. 121-138
    • Nashimoto, H.1
  • 20
    • 0015924780 scopus 로고
    • Ribosomal proteins. 43. In vivo assembly of Escherichia coli ribosomal proteins
    • Nierhaus K.H., et al. Ribosomal proteins. 43. In vivo assembly of Escherichia coli ribosomal proteins. J. Mol. Biol 74 (1973) 587-597
    • (1973) J. Mol. Biol , vol.74 , pp. 587-597
    • Nierhaus, K.H.1
  • 21
    • 0016607629 scopus 로고
    • Intermediates and time kinetics of the in vivo assembly of Escherichia coli ribosomes
    • Lindahl L. Intermediates and time kinetics of the in vivo assembly of Escherichia coli ribosomes. J. Mol. Biol. 92 (1975) 15-37
    • (1975) J. Mol. Biol. , vol.92 , pp. 15-37
    • Lindahl, L.1
  • 22
    • 0027362954 scopus 로고
    • Mutant DnaK chaperones cause ribosome assembly defects in Escherichia coli
    • Alix J.H., and Guerin M.F. Mutant DnaK chaperones cause ribosome assembly defects in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 90 (1993) 9725-9729
    • (1993) Proc. Natl. Acad. Sci. U. S. A. , vol.90 , pp. 9725-9729
    • Alix, J.H.1    Guerin, M.F.2
  • 23
    • 0742322957 scopus 로고    scopus 로고
    • Mapping structural differences between 30S ribosomal subunit assembly intermediates
    • Holmes K.L., and Culver G.M. Mapping structural differences between 30S ribosomal subunit assembly intermediates. Nat. Struct. Mol. Biol. 11 (2004) 179-186
    • (2004) Nat. Struct. Mol. Biol. , vol.11 , pp. 179-186
    • Holmes, K.L.1    Culver, G.M.2
  • 24
    • 0019872066 scopus 로고
    • Physical characteristics of 23 S rRNA from the 50 S ribosomal subunit of Escherichia coli
    • Tam M.F., et al. Physical characteristics of 23 S rRNA from the 50 S ribosomal subunit of Escherichia coli. FEBS Lett. 130 (1981) 217-220
    • (1981) FEBS Lett. , vol.130 , pp. 217-220
    • Tam, M.F.1
  • 25
    • 0019888194 scopus 로고
    • Physical characteristics of 16 S rRNA under reconstitution conditions
    • Tam M.F., et al. Physical characteristics of 16 S rRNA under reconstitution conditions. J. Biol. Chem. 256 (1981) 6430-6434
    • (1981) J. Biol. Chem. , vol.256 , pp. 6430-6434
    • Tam, M.F.1
  • 26
    • 0019849246 scopus 로고
    • Physical characteristics of the reconstitution intermediates (RI30 and RI30*) from the 30S ribosomal subunit of Escherichia coli
    • Tam M.F., and Hill W.E. Physical characteristics of the reconstitution intermediates (RI30 and RI30*) from the 30S ribosomal subunit of Escherichia coli. Biochemistry 20 (1981) 6480-6484
    • (1981) Biochemistry , vol.20 , pp. 6480-6484
    • Tam, M.F.1    Hill, W.E.2
  • 27
    • 0027273672 scopus 로고
    • A cold-sensitive mutation in 16S rRNA provides evidence for helical switching in ribosome assembly
    • Dammel C.S., and Noller H.F. A cold-sensitive mutation in 16S rRNA provides evidence for helical switching in ribosome assembly. Genes Dev. 7 (1993) 660-670
    • (1993) Genes Dev. , vol.7 , pp. 660-670
    • Dammel, C.S.1    Noller, H.F.2
  • 28
    • 44249096370 scopus 로고    scopus 로고
    • Suppression of a cold-sensitive mutation in ribosomal protein S5 reveals a role for RimJ in ribosome biogenesis
    • Roy-Chaudhuri B., et al. Suppression of a cold-sensitive mutation in ribosomal protein S5 reveals a role for RimJ in ribosome biogenesis. Mol. Microbiol. 68 (2008) 1547-1559
    • (2008) Mol. Microbiol. , vol.68 , pp. 1547-1559
    • Roy-Chaudhuri, B.1
  • 29
    • 33745591129 scopus 로고    scopus 로고
    • 30S ribosomal subunits can be assembled in vivo without primary binding ribosomal protein S15
    • Bubunenko M., et al. 30S ribosomal subunits can be assembled in vivo without primary binding ribosomal protein S15. RNA 12 (2006) 1229-1239
    • (2006) RNA , vol.12 , pp. 1229-1239
    • Bubunenko, M.1
  • 30
    • 33748486487 scopus 로고    scopus 로고
    • The tandem GTPase, Der, is essential for the biogenesis of 50S ribosomal subunits in Escherichia coli
    • Hwang J., and Inouye M. The tandem GTPase, Der, is essential for the biogenesis of 50S ribosomal subunits in Escherichia coli. Mol. Microbiol. 61 (2006) 1660-1672
    • (2006) Mol. Microbiol. , vol.61 , pp. 1660-1672
    • Hwang, J.1    Inouye, M.2
  • 31
    • 0031953140 scopus 로고    scopus 로고
    • Cell cycle arrest in Era GTPase mutants: a potential growth rate-regulated checkpoint in Escherichia coli
    • Britton R.A., et al. Cell cycle arrest in Era GTPase mutants: a potential growth rate-regulated checkpoint in Escherichia coli. Mol. Microbiol. 27 (1998) 739-750
    • (1998) Mol. Microbiol. , vol.27 , pp. 739-750
    • Britton, R.A.1
  • 32
    • 0033577789 scopus 로고    scopus 로고
    • RNase G (CafA protein) and RNase E are both required for the 5′ maturation of 16S ribosomal RNA
    • Li Z., et al. RNase G (CafA protein) and RNase E are both required for the 5′ maturation of 16S ribosomal RNA. EMBO J. 18 (1999) 2878-2885
    • (1999) EMBO J. , vol.18 , pp. 2878-2885
    • Li, Z.1
  • 33
    • 0028906075 scopus 로고
    • Suppression of a cold-sensitive mutation in 16S rRNA by overexpression of a novel ribosome-binding factor, RbfA
    • Dammel C.S., and Noller H.F. Suppression of a cold-sensitive mutation in 16S rRNA by overexpression of a novel ribosome-binding factor, RbfA. Genes Dev 9 (1995) 626-637
    • (1995) Genes Dev , vol.9 , pp. 626-637
    • Dammel, C.S.1    Noller, H.F.2
  • 34
    • 0025010979 scopus 로고
    • The GTPase superfamily: a conserved switch for diverse cell functions
    • Bourne H.R., et al. The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348 (1990) 125-132
    • (1990) Nature , vol.348 , pp. 125-132
    • Bourne, H.R.1
  • 35
    • 0034909325 scopus 로고    scopus 로고
    • Evolution of a molecular switch: universal bacterial GTPases regulate ribosome function
    • Caldon C.E., et al. Evolution of a molecular switch: universal bacterial GTPases regulate ribosome function. Mol. Microbiol. 41 (2001) 289-297
    • (2001) Mol. Microbiol. , vol.41 , pp. 289-297
    • Caldon, C.E.1
  • 36
    • 33745757322 scopus 로고    scopus 로고
    • Era and RbfA have overlapping function in ribosome biogenesis in Escherichia coli
    • Inoue K., et al. Era and RbfA have overlapping function in ribosome biogenesis in Escherichia coli. J. Mol. Microbiol. Biotechnol. 11 (2006) 41-52
    • (2006) J. Mol. Microbiol. Biotechnol. , vol.11 , pp. 41-52
    • Inoue, K.1
  • 37
    • 33749362996 scopus 로고    scopus 로고
    • The Escherichia coli GTPase CgtA is involved in late steps of large ribosome assembly
    • Jiang M., et al. The Escherichia coli GTPase CgtA is involved in late steps of large ribosome assembly. J. Bacteriol. 188 (2006) 6757-6770
    • (2006) J. Bacteriol. , vol.188 , pp. 6757-6770
    • Jiang, M.1
  • 38
    • 41549110324 scopus 로고    scopus 로고
    • Genetic interaction screens with ordered overexpression and deletion clone sets implicate the Escherichia coli GTPase YjeQ in late ribosome biogenesis
    • Campbell T.L., and Brown E.D. Genetic interaction screens with ordered overexpression and deletion clone sets implicate the Escherichia coli GTPase YjeQ in late ribosome biogenesis. J. Bacteriol. 190 (2008) 2537-2545
    • (2008) J. Bacteriol. , vol.190 , pp. 2537-2545
    • Campbell, T.L.1    Brown, E.D.2
  • 39
    • 34547756386 scopus 로고    scopus 로고
    • Complementation analysis of the cold-sensitive phenotype of the Escherichia coli csdA deletion strain
    • Awano N., et al. Complementation analysis of the cold-sensitive phenotype of the Escherichia coli csdA deletion strain. J. Bacteriol. 189 (2007) 5808-5815
    • (2007) J. Bacteriol. , vol.189 , pp. 5808-5815
    • Awano, N.1
  • 40
    • 0038016743 scopus 로고    scopus 로고
    • Suppression of defective ribosome assembly in a rbfA deletion mutant by overexpression of Era, an essential GTPase in Escherichia coli
    • Inoue K., et al. Suppression of defective ribosome assembly in a rbfA deletion mutant by overexpression of Era, an essential GTPase in Escherichia coli. Mol. Microbiol. 48 (2003) 1005-1016
    • (2003) Mol. Microbiol. , vol.48 , pp. 1005-1016
    • Inoue, K.1
  • 41
    • 20844460290 scopus 로고    scopus 로고
    • Interaction of Era with the 30S ribosomal subunit implications for 30S subunit assembly
    • Sharma M.R., et al. Interaction of Era with the 30S ribosomal subunit implications for 30S subunit assembly. Mol. Cell 18 (2005) 319-329
    • (2005) Mol. Cell , vol.18 , pp. 319-329
    • Sharma, M.R.1
  • 42
    • 33751565433 scopus 로고    scopus 로고
    • Multiple GTPases participate in the assembly of the large ribosomal subunit in Bacillus subtilis
    • Schaefer L., et al. Multiple GTPases participate in the assembly of the large ribosomal subunit in Bacillus subtilis. J. Bacteriol. 188 (2006) 8252-8258
    • (2006) J. Bacteriol. , vol.188 , pp. 8252-8258
    • Schaefer, L.1
  • 43
    • 33645050402 scopus 로고    scopus 로고
    • The essential GTPase RbgA (YlqF) is required for 50S ribosome assembly in Bacillus subtilis
    • Uicker W.C., et al. The essential GTPase RbgA (YlqF) is required for 50S ribosome assembly in Bacillus subtilis. Mol. Microbiol. 59 (2006) 528-540
    • (2006) Mol. Microbiol. , vol.59 , pp. 528-540
    • Uicker, W.C.1
  • 44
    • 38749135529 scopus 로고    scopus 로고
    • Interactions of an essential Bacillus subtilis GTPase, YsxC, with ribosomes
    • Wicker-Planquart C., et al. Interactions of an essential Bacillus subtilis GTPase, YsxC, with ribosomes. J. Bacteriol. 190 (2008) 681-690
    • (2008) J. Bacteriol. , vol.190 , pp. 681-690
    • Wicker-Planquart, C.1
  • 45
    • 34948898622 scopus 로고    scopus 로고
    • The GTP-binding protein YqeH participates in biogenesis of the 30S ribosome subunit in Bacillus subtilis
    • Loh P.C., et al. The GTP-binding protein YqeH participates in biogenesis of the 30S ribosome subunit in Bacillus subtilis. Genes Genet. Syst. 82 (2007) 281-289
    • (2007) Genes Genet. Syst. , vol.82 , pp. 281-289
    • Loh, P.C.1
  • 46
    • 34548473560 scopus 로고    scopus 로고
    • Isolation and characterization of a dominant negative mutant of Bacillus subtilis GTP-binding protein, YlqF, essential for biogenesis and maintenance of the 50 S ribosomal subunit
    • Matsuo Y., et al. Isolation and characterization of a dominant negative mutant of Bacillus subtilis GTP-binding protein, YlqF, essential for biogenesis and maintenance of the 50 S ribosomal subunit. J. Biol. Chem. 282 (2007) 25270-25277
    • (2007) J. Biol. Chem. , vol.282 , pp. 25270-25277
    • Matsuo, Y.1
  • 47
    • 0036629250 scopus 로고    scopus 로고
    • rRNA modifications and ribosome function
    • Decatur W.A., and Fournier M.J. rRNA modifications and ribosome function. Trends Biochem. Sci. 27 (2002) 344-351
    • (2002) Trends Biochem. Sci. , vol.27 , pp. 344-351
    • Decatur, W.A.1    Fournier, M.J.2
  • 48
    • 0015494418 scopus 로고
    • Mechanism of kasugamycin resistance in Escherichia coli
    • Helser T.L., et al. Mechanism of kasugamycin resistance in Escherichia coli. Nat. New Biol. 235 (1972) 6-9
    • (1972) Nat. New Biol. , vol.235 , pp. 6-9
    • Helser, T.L.1
  • 49
    • 0014929597 scopus 로고
    • Kasugamycin resistance: 30S ribosomal mutation with an unusual location on the Escherichia coli chromosome
    • Sparling P.F. Kasugamycin resistance: 30S ribosomal mutation with an unusual location on the Escherichia coli chromosome. Science 167 (1970) 56-58
    • (1970) Science , vol.167 , pp. 56-58
    • Sparling, P.F.1
  • 50
    • 33846678393 scopus 로고    scopus 로고
    • Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria
    • Okamoto S., et al. Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria. Mol. Microbiol. 63 (2007) 1096-1106
    • (2007) Mol. Microbiol. , vol.63 , pp. 1096-1106
    • Okamoto, S.1
  • 51
    • 38549164687 scopus 로고    scopus 로고
    • The 3D rRNA modification maps database: with interactive tools for ribosome analysis
    • Piekna-Przybylska D., et al. The 3D rRNA modification maps database: with interactive tools for ribosome analysis. Nucleic Acids Res. 36 (2008) D178-D183
    • (2008) Nucleic Acids Res. , vol.36
    • Piekna-Przybylska, D.1
  • 52
    • 37649019612 scopus 로고    scopus 로고
    • Pseudouridylation of helix 69 of 23S rRNA is necessary for an effective translation termination
    • Ejby M., et al. Pseudouridylation of helix 69 of 23S rRNA is necessary for an effective translation termination. Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 19410-19415
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 19410-19415
    • Ejby, M.1
  • 53
    • 40949093636 scopus 로고    scopus 로고
    • Role of 16S ribosomal RNA methylations in translation initiation in Escherichia coli
    • Das G., et al. Role of 16S ribosomal RNA methylations in translation initiation in Escherichia coli. EMBO J. 27 (2008) 840-851
    • (2008) EMBO J. , vol.27 , pp. 840-851
    • Das, G.1
  • 54
    • 0029044829 scopus 로고
    • The structure of ribosomal RNA: a three-dimensional jigsaw puzzle
    • Brimacombe R. The structure of ribosomal RNA: a three-dimensional jigsaw puzzle. Eur. J. Biochem. 230 (1995) 365-383
    • (1995) Eur. J. Biochem. , vol.230 , pp. 365-383
    • Brimacombe, R.1
  • 55
    • 35549012369 scopus 로고    scopus 로고
    • Substrate specificity and properties of the Escherichia coli 16S rRNA methyltransferase, RsmE
    • Basturea G.N., and Deutscher M.P. Substrate specificity and properties of the Escherichia coli 16S rRNA methyltransferase, RsmE. RNA 13 (2007) 1969-1976
    • (2007) RNA , vol.13 , pp. 1969-1976
    • Basturea, G.N.1    Deutscher, M.P.2
  • 56
    • 34249856379 scopus 로고    scopus 로고
    • Ribosomal RNA guanine-(N2)-methyltransferases and their targets
    • Sergiev P.V., et al. Ribosomal RNA guanine-(N2)-methyltransferases and their targets. Nucleic Acids Res. 35 (2007) 2295-2301
    • (2007) Nucleic Acids Res. , vol.35 , pp. 2295-2301
    • Sergiev, P.V.1
  • 57
    • 55549136068 scopus 로고    scopus 로고
    • Crystal structure of the Thermus thermophilus 16 S rRNA methyltransferase RsmC in complex with cofactor and substrate guanosine
    • Demirci H., et al. Crystal structure of the Thermus thermophilus 16 S rRNA methyltransferase RsmC in complex with cofactor and substrate guanosine. J. Biol. Chem. 283 (2008) 26548-26556
    • (2008) J. Biol. Chem. , vol.283 , pp. 26548-26556
    • Demirci, H.1
  • 58
    • 33646179813 scopus 로고    scopus 로고
    • Recognition of a complex substrate by the KsgA/Dim1 family of enzymes has been conserved throughout evolution
    • O'Farrell H.C., et al. Recognition of a complex substrate by the KsgA/Dim1 family of enzymes has been conserved throughout evolution. RNA 12 (2006) 725-733
    • (2006) RNA , vol.12 , pp. 725-733
    • O'Farrell, H.C.1
  • 59
    • 0016321036 scopus 로고
    • Methylation of 16S RNA during ribosome assembly in vitro
    • Thammana P., and Held W.A. Methylation of 16S RNA during ribosome assembly in vitro. Nature 251 (1974) 682-686
    • (1974) Nature , vol.251 , pp. 682-686
    • Thammana, P.1    Held, W.A.2
  • 60
    • 43249093216 scopus 로고    scopus 로고
    • A conserved rRNA methyltransferase regulates ribosome biogenesis
    • Xu Z., et al. A conserved rRNA methyltransferase regulates ribosome biogenesis. Nat. Struct. Mol. Biol. 15 (2008) 534-536
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 534-536
    • Xu, Z.1
  • 61
    • 55349106559 scopus 로고    scopus 로고
    • Mechanistic insight into the ribosome biogenesis functions of the ancient protein KsgA
    • Connolly K., et al. Mechanistic insight into the ribosome biogenesis functions of the ancient protein KsgA. Mol. Microbiol. 70 (2008) 1062-1075
    • (2008) Mol. Microbiol. , vol.70 , pp. 1062-1075
    • Connolly, K.1
  • 62
    • 0018686494 scopus 로고
    • Studies on the function of two adjacent N6,N6-dimethyladenosines near the 3′ end of 16 S ribosomal RNA of Escherichia coli. II. The effect of the absence of the methyl groups on initiation of protein biosynthesis
    • Poldermans B., et al. Studies on the function of two adjacent N6,N6-dimethyladenosines near the 3′ end of 16 S ribosomal RNA of Escherichia coli. II. The effect of the absence of the methyl groups on initiation of protein biosynthesis. J. Biol. Chem 254 (1979) 9090-9093
    • (1979) J. Biol. Chem , vol.254 , pp. 9090-9093
    • Poldermans, B.1
  • 63
    • 2542557396 scopus 로고    scopus 로고
    • CsdA, a cold-shock RNA helicase from Escherichia coli, is involved in the biogenesis of 50S ribosomal subunit
    • Charollais J., et al. CsdA, a cold-shock RNA helicase from Escherichia coli, is involved in the biogenesis of 50S ribosomal subunit. Nucleic Acids Res. 32 (2004) 2751-2759
    • (2004) Nucleic Acids Res. , vol.32 , pp. 2751-2759
    • Charollais, J.1
  • 64
    • 47249094203 scopus 로고    scopus 로고
    • Ribosome assembly in Escherichia coli strains lacking the RNA helicase DeaD/CsdA or DbpA
    • Peil L., et al. Ribosome assembly in Escherichia coli strains lacking the RNA helicase DeaD/CsdA or DbpA. FEBS J. 275 (2008) 3772-3782
    • (2008) FEBS J. , vol.275 , pp. 3772-3782
    • Peil, L.1
  • 65
    • 38649135052 scopus 로고    scopus 로고
    • The E. coli RhlE RNA helicase regulates the function of related RNA helicases during ribosome assembly
    • Jain C. The E. coli RhlE RNA helicase regulates the function of related RNA helicases during ribosome assembly. RNA 14 (2008) 381-389
    • (2008) RNA , vol.14 , pp. 381-389
    • Jain, C.1
  • 66
    • 0038120874 scopus 로고    scopus 로고
    • The DEAD-box RNA helicase SrmB is involved in the assembly of 50S ribosomal subunits in Escherichia coli
    • Charollais J., et al. The DEAD-box RNA helicase SrmB is involved in the assembly of 50S ribosomal subunits in Escherichia coli. Mol. Microbiol. 48 (2003) 1253-1265
    • (2003) Mol. Microbiol. , vol.48 , pp. 1253-1265
    • Charollais, J.1
  • 67
    • 0035476705 scopus 로고    scopus 로고
    • Escherichia coli DbpA is an RNA helicase that requires hairpin 92 of 23S rRNA
    • Diges C.M., and Uhlenbeck O.C. Escherichia coli DbpA is an RNA helicase that requires hairpin 92 of 23S rRNA. EMBO J. 19 (2001) 5503-5512
    • (2001) EMBO J. , vol.19 , pp. 5503-5512
    • Diges, C.M.1    Uhlenbeck, O.C.2
  • 68
    • 0029786252 scopus 로고    scopus 로고
    • RbfA, a 30S ribosomal binding factor, is a cold-shock protein whose absence triggers the cold-shock response
    • Jones P.G., and Inouye M. RbfA, a 30S ribosomal binding factor, is a cold-shock protein whose absence triggers the cold-shock response. Mol. Microbiol. 21 (1996) 1207-1218
    • (1996) Mol. Microbiol. , vol.21 , pp. 1207-1218
    • Jones, P.G.1    Inouye, M.2
  • 69
    • 58449101336 scopus 로고    scopus 로고
    • Ribosome biogenesis is temperature-dependent and delayed in Escherichia coli lacking the chaperones DnaK or DnaJ
    • Al Refaii A., and Alix J.H. Ribosome biogenesis is temperature-dependent and delayed in Escherichia coli lacking the chaperones DnaK or DnaJ. Mol. Microbiol. 71 (2008) 748-762
    • (2008) Mol. Microbiol. , vol.71 , pp. 748-762
    • Al Refaii, A.1    Alix, J.H.2
  • 70
    • 0036342369 scopus 로고    scopus 로고
    • The DnaK chaperone system facilitates 30S ribosomal subunit assembly
    • Maki J.A., et al. The DnaK chaperone system facilitates 30S ribosomal subunit assembly. Mol. Cell 10 (2002) 129-138
    • (2002) Mol. Cell , vol.10 , pp. 129-138
    • Maki, J.A.1
  • 71
    • 0031973622 scopus 로고    scopus 로고
    • RimM and RbfA are essential for efficient processing of 16S rRNA in Escherichia coli
    • Bylund G.O., et al. RimM and RbfA are essential for efficient processing of 16S rRNA in Escherichia coli. J. Bacteriol. 180 (1998) 73-82
    • (1998) J. Bacteriol. , vol.180 , pp. 73-82
    • Bylund, G.O.1
  • 72
    • 35649008817 scopus 로고    scopus 로고
    • Structural aspects of RbfA action during small ribosomal subunit assembly
    • Datta P.P., et al. Structural aspects of RbfA action during small ribosomal subunit assembly. Mol. Cell 28 (2007) 434-445
    • (2007) Mol. Cell , vol.28 , pp. 434-445
    • Datta, P.P.1
  • 73
    • 34548490098 scopus 로고    scopus 로고
    • Structural characterization of the ribosome maturation protein
    • Suzuki S., et al. Structural characterization of the ribosome maturation protein. RimM. J. Bacteriol. 189 (2007) 6397-6406
    • (2007) RimM. J. Bacteriol. , vol.189 , pp. 6397-6406
    • Suzuki, S.1
  • 74
    • 13444259766 scopus 로고    scopus 로고
    • The YrdC protein - a putative ribosome maturation factor
    • Kaczanowska M., and Ryden-Aulin M. The YrdC protein - a putative ribosome maturation factor. Biochim. Biophys. Acta 1727 (2005) 87-96
    • (2005) Biochim. Biophys. Acta , vol.1727 , pp. 87-96
    • Kaczanowska, M.1    Ryden-Aulin, M.2
  • 75
    • 0022354715 scopus 로고
    • Gene rpmF for ribosomal protein L32 and gene rimJ for a ribosomal protein acetylating enzyme are located near pyrC (23.4 min) in Escherichia coli
    • Janda I., et al. Gene rpmF for ribosomal protein L32 and gene rimJ for a ribosomal protein acetylating enzyme are located near pyrC (23.4 min) in Escherichia coli. Mol. Gen. Genet 201 (1985) 433-436
    • (1985) Mol. Gen. Genet , vol.201 , pp. 433-436
    • Janda, I.1
  • 76
    • 1342325469 scopus 로고    scopus 로고
    • In vivo effect of NusB and NusG on rRNA transcription antitermination
    • Torres M., et al. In vivo effect of NusB and NusG on rRNA transcription antitermination. J. Bacteriol. 186 (2004) 1304-1310
    • (2004) J. Bacteriol. , vol.186 , pp. 1304-1310
    • Torres, M.1
  • 77
    • 14244264774 scopus 로고    scopus 로고
    • Transcriptional polarity in rRNA operons of Escherichia coli nusA and nusB mutant strains
    • Quan S., et al. Transcriptional polarity in rRNA operons of Escherichia coli nusA and nusB mutant strains. J. Bacteriol. 187 (2005) 1632-1638
    • (2005) J. Bacteriol. , vol.187 , pp. 1632-1638
    • Quan, S.1
  • 78
    • 10044234372 scopus 로고    scopus 로고
    • rRNA transcription in Escherichia coli
    • Paul B.J., et al. rRNA transcription in Escherichia coli. Annu. Rev. Genet. 38 (2004) 749-770
    • (2004) Annu. Rev. Genet. , vol.38 , pp. 749-770
    • Paul, B.J.1
  • 79
    • 0033541674 scopus 로고    scopus 로고
    • Observation of Escherichia coli ribosomal proteins and their posttranslational modifications by mass spectrometry
    • Arnold R.J., and Reilly J.P. Observation of Escherichia coli ribosomal proteins and their posttranslational modifications by mass spectrometry. Anal. Biochem. 269 (1999) 105-112
    • (1999) Anal. Biochem. , vol.269 , pp. 105-112
    • Arnold, R.J.1    Reilly, J.P.2
  • 80
    • 13444283630 scopus 로고    scopus 로고
    • Interaction network containing conserved and essential protein complexes in Escherichia coli
    • Butland G., et al. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433 (2005) 531-537
    • (2005) Nature , vol.433 , pp. 531-537
    • Butland, G.1
  • 81
    • 33745160404 scopus 로고    scopus 로고
    • Large-scale identification of protein-protein interaction of Escherichia coli K-12
    • Arifuzzaman M., et al. Large-scale identification of protein-protein interaction of Escherichia coli K-12. Genome Res. 16 (2006) 686-691
    • (2006) Genome Res. , vol.16 , pp. 686-691
    • Arifuzzaman, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.