-
1
-
-
34447132814
-
Skeletal remodeling in health and disease
-
Zaidi, M. 2007. Skeletal remodeling in health and disease. Nat. Med. 13:791-801.
-
(2007)
Nat. Med
, vol.13
, pp. 791-801
-
-
Zaidi, M.1
-
2
-
-
84855854953
-
Osteoporosis and inflammation
-
Mundy, G.R. 2007. Osteoporosis and inflammation. Nutr. Rev. 65:S147-S151.
-
(2007)
Nutr. Rev
, vol.65
-
-
Mundy, G.R.1
-
3
-
-
33745199187
-
A TNF receptor loop peptide mimic blocks RANK ligand-induced signaling, bone resorption, and bone loss
-
Aoki, K., et al. 2006. A TNF receptor loop peptide mimic blocks RANK ligand-induced signaling, bone resorption, and bone loss. J. Clin. Invest. 116:1525-1534.
-
(2006)
J. Clin. Invest
, vol.116
, pp. 1525-1534
-
-
Aoki, K.1
-
4
-
-
33947583822
-
Osteoimmunology: Shared mechanisms and crosstalk between the immune and bone systems
-
Takayanagi, H. 2007. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 7:292-304.
-
(2007)
Nat. Rev. Immunol
, vol.7
, pp. 292-304
-
-
Takayanagi, H.1
-
5
-
-
33645657715
-
Osteoimmunology: Interplay between the immune system and bone metabolism
-
Walsh, M.C., et al. 2006. Osteoimmunology: interplay between the immune system and bone metabolism. Annu. Rev. Immunol. 24:33-63.
-
(2006)
Annu. Rev. Immunol
, vol.24
, pp. 33-63
-
-
Walsh, M.C.1
-
6
-
-
33748091692
-
Osteoclast precursors: Cytokine-stimulated immunomodulators of inflammatory bone disease
-
Boyce, B.F., Schwarz, E.M., and Xing, L. 2006. Osteoclast precursors: cytokine-stimulated immunomodulators of inflammatory bone disease. Curr. Opin. Rheumatol. 18:427-432.
-
(2006)
Curr. Opin. Rheumatol
, vol.18
, pp. 427-432
-
-
Boyce, B.F.1
Schwarz, E.M.2
Xing, L.3
-
7
-
-
0037673945
-
Osteoclast differentiation and activation
-
Boyle, W.J., Simonet, W.S., and Lacey, D.L. 2003. Osteoclast differentiation and activation. Nature. 423:337-342.
-
(2003)
Nature
, vol.423
, pp. 337-342
-
-
Boyle, W.J.1
Simonet, W.S.2
Lacey, D.L.3
-
8
-
-
0033304730
-
Modulation of osteoclast differentiation and function by the new member of the tumor necrosis factor receptor and ligand families
-
Suda, T. 1999. Modulation of osteoclast differentiation and function by the new member of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20:345-357.
-
(1999)
Endocr. Rev
, vol.20
, pp. 345-357
-
-
Suda, T.1
-
9
-
-
0032561198
-
The TRAF family of signal transducers mediates NF-κB activation by the TRANCE receptor
-
Wong, B.R., et al. 1998. The TRAF family of signal transducers mediates NF-κB activation by the TRANCE receptor. J. Biol. Chem. 273:28355-28359.
-
(1998)
J. Biol. Chem
, vol.273
, pp. 28355-28359
-
-
Wong, B.R.1
-
10
-
-
33846031926
-
The molecular understanding of osteoclast differentiation
-
Asagiri, M., and Takayanagi, H. 2007. The molecular understanding of osteoclast differentiation. Bone. 40:251-264.
-
(2007)
Bone
, vol.40
, pp. 251-264
-
-
Asagiri, M.1
Takayanagi, H.2
-
11
-
-
0033561039
-
TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling
-
Lomaga, M.A., et al. 1999. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 13:1015-1024.
-
(1999)
Genes Dev
, vol.13
, pp. 1015-1024
-
-
Lomaga, M.A.1
-
12
-
-
6544270833
-
Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice
-
Naito, A., et al. 1999. Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells. 4:353-362.
-
(1999)
Genes Cells
, vol.4
, pp. 353-362
-
-
Naito, A.1
-
13
-
-
0036218666
-
RANK-L and RANK: T cells, bone loss, and mammalian evolution
-
Theill, L.E., Boyle, W.J., and Penninger, J.M. 2002. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu. Rev. Immunol. 20:795-823.
-
(2002)
Annu. Rev. Immunol
, vol.20
, pp. 795-823
-
-
Theill, L.E.1
Boyle, W.J.2
Penninger, J.M.3
-
15
-
-
16844377831
-
Mechanistic insight into osteoclast differentiation in osteoimmunology
-
Takayanagi, H. 2005. Mechanistic insight into osteoclast differentiation in osteoimmunology. J. Mol. Med. 83:170-179.
-
(2005)
J. Mol. Med
, vol.83
, pp. 170-179
-
-
Takayanagi, H.1
-
16
-
-
18744366041
-
Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts
-
Takayanagi, H. 2002. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell. 3:889-901.
-
(2002)
Dev. Cell
, vol.3
, pp. 889-901
-
-
Takayanagi, H.1
-
17
-
-
27744432009
-
Autoamplification of NFATc1 expression determines its essential role in bone homeostasis
-
Asagiri, M., et al. 2005. Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J. Exp. Med. 202:1261-1269.
-
(2005)
J. Exp. Med
, vol.202
, pp. 1261-1269
-
-
Asagiri, M.1
-
18
-
-
33646068740
-
NFATc1 regulation of the human β3 integrin promoter in osteoclast differentiation
-
Crotti, T.N., et al. 2006. NFATc1 regulation of the human β3 integrin promoter in osteoclast differentiation. Gene. 372:92-102.
-
(2006)
Gene
, vol.372
, pp. 92-102
-
-
Crotti, T.N.1
-
19
-
-
25444444351
-
Contribution of NFATc1 to the transcriptional control of immunoreceptor osteoclast-associated receptor but not triggering receptor expressed by myeloid cells-2 during osteoclastogenesis
-
Kim, Y., et al. 2005. Contribution of NFATc1 to the transcriptional control of immunoreceptor osteoclast-associated receptor but not triggering receptor expressed by myeloid cells-2 during osteoclastogenesis. J. Biol. Chem. 280:32905-32913.
-
(2005)
J. Biol. Chem
, vol.280
, pp. 32905-32913
-
-
Kim, Y.1
-
20
-
-
8544267975
-
Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1
-
Matsumoto, M., et al. 2004. Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1. J. Biol. Chem. 279:45969-45979.
-
(2004)
J. Biol. Chem
, vol.279
, pp. 45969-45979
-
-
Matsumoto, M.1
-
21
-
-
11144354330
-
Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis
-
Koga, T., et al. 2004. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature. 428:758-763.
-
(2004)
Nature
, vol.428
, pp. 758-763
-
-
Koga, T.1
-
22
-
-
34748847496
-
Signaling axis in osteoclast biology and therapeutic targeting in the RANKL/ RANK/OPG system
-
Tanaka, S. 2007. Signaling axis in osteoclast biology and therapeutic targeting in the RANKL/ RANK/OPG system. Am. J. Nephrol. 27:466-478.
-
(2007)
Am. J. Nephrol
, vol.27
, pp. 466-478
-
-
Tanaka, S.1
-
23
-
-
0034614892
-
TRANCE, a tumor necrosis factor family member, enhances the longevity and adjuvant properties of dendritic cells in vivo
-
Josien, R., et al. 2000. TRANCE, a tumor necrosis factor family member, enhances the longevity and adjuvant properties of dendritic cells in vivo. J. Exp. Med. 191:495-502.
-
(2000)
J. Exp. Med
, vol.191
, pp. 495-502
-
-
Josien, R.1
-
24
-
-
33845543666
-
Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells
-
Loser, K., et al. 2006. Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat. Med. 12:1372-1379.
-
(2006)
Nat. Med
, vol.12
, pp. 1372-1379
-
-
Loser, K.1
-
25
-
-
0034730327
-
The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development
-
Fata, J.E., et al. 2000. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell. 103:41-50.
-
(2000)
Cell
, vol.103
, pp. 41-50
-
-
Fata, J.E.1
-
26
-
-
39049122318
-
Strategies for novel therapeutic approaches targeting cytokines and signaling pathways of osteoclasto-and osteoblastogenesis in the fight against immune-mediated bone and joint diseases
-
Sipos, W., Pietschmann, P., and Rauner, M. 2008. Strategies for novel therapeutic approaches targeting cytokines and signaling pathways of osteoclasto-and osteoblastogenesis in the fight against immune-mediated bone and joint diseases. Curr. Med. Chem. 15:127-136.
-
(2008)
Curr. Med. Chem
, vol.15
, pp. 127-136
-
-
Sipos, W.1
Pietschmann, P.2
Rauner, M.3
-
27
-
-
33646195317
-
A novel receptor activator of NF-κB (RANK) cytoplasmic motif plays an essential role in osteoclastogenesis by committing macrophages to the osteoclast lineage
-
Xu, D., Wang, S., Liu, W., and Feng, X. 2006. A novel receptor activator of NF-κB (RANK) cytoplasmic motif plays an essential role in osteoclastogenesis by committing macrophages to the osteoclast lineage. J. Biol. Chem. 281:4678-4690.
-
(2006)
J. Biol. Chem
, vol.281
, pp. 4678-4690
-
-
Xu, D.1
Wang, S.2
Liu, W.3
Feng, X.4
-
28
-
-
14644427886
-
Strength of TRAF6 signalling determines osteoclastogenesis
-
Kadono, Y., et al. 2005. Strength of TRAF6 signalling determines osteoclastogenesis. EMBO Rep. 6:171-176.
-
(2005)
EMBO Rep
, vol.6
, pp. 171-176
-
-
Kadono, Y.1
-
29
-
-
33646587029
-
Intranasal delivery of the cytoplasmic domain of CTLA-4 using a novel protein transduction domain prevents allergic inflammation
-
Choi, J.M., et al. 2006. Intranasal delivery of the cytoplasmic domain of CTLA-4 using a novel protein transduction domain prevents allergic inflammation. Nat. Med. 12:574-579.
-
(2006)
Nat. Med
, vol.12
, pp. 574-579
-
-
Choi, J.M.1
-
30
-
-
0037129205
-
RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-β
-
Takayanagi, H., et al. 2002. RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-β. Nature. 416:744-749.
-
(2002)
Nature
, vol.416
, pp. 744-749
-
-
Takayanagi, H.1
-
31
-
-
0026023289
-
Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice
-
Soriano, P., Montgomery, C., Geske, R., and Bradley, A. 1991. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell. 64:693-702.
-
(1991)
Cell
, vol.64
, pp. 693-702
-
-
Soriano, P.1
Montgomery, C.2
Geske, R.3
Bradley, A.4
-
32
-
-
0034735773
-
T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ
-
Takayanagi, H., et al. 2000. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ. Nature. 408:600-605.
-
(2000)
Nature
, vol.408
, pp. 600-605
-
-
Takayanagi, H.1
-
33
-
-
0033621890
-
Mice lacking β3 integrins are osteosclerotic because of dysfunctional osteoclasts
-
McHugh, K.P., et al. 2000. Mice lacking β3 integrins are osteosclerotic because of dysfunctional osteoclasts. J. Clin. Invest. 105:433-440.
-
(2000)
J. Clin. Invest
, vol.105
, pp. 433-440
-
-
McHugh, K.P.1
-
34
-
-
0032938495
-
Rac-GTPase, OC cytoskeleton and bone resorption
-
Razzouk, S., Lieberherr, M., and Cournot, G. 1999. Rac-GTPase, OC cytoskeleton and bone resorption. Eur. J. Cell Biol. 78:249-255.
-
(1999)
Eur. J. Cell Biol
, vol.78
, pp. 249-255
-
-
Razzouk, S.1
Lieberherr, M.2
Cournot, G.3
-
35
-
-
16244368766
-
Vav3 regulates osteoclast function and bone mass
-
Faccio, R., et al. 2005. Vav3 regulates osteoclast function and bone mass. Nat. Med. 11:284-290.
-
(2005)
Nat. Med
, vol.11
, pp. 284-290
-
-
Faccio, R.1
-
36
-
-
0030801832
-
Lipopolysaccharide-stimulated osteoclastogenesis is mediated by tumor necrosis factor via its P55 receptor
-
Abu-Amer, Y., Ross, F.P., Edwards, J., and Teitelbaum, S.L. 1999. Lipopolysaccharide-stimulated osteoclastogenesis is mediated by tumor necrosis factor via its P55 receptor. J. Clin. Invest. 100:1557-1565.
-
(1999)
J. Clin. Invest
, vol.100
, pp. 1557-1565
-
-
Abu-Amer, Y.1
Ross, F.P.2
Edwards, J.3
Teitelbaum, S.L.4
-
37
-
-
0034523328
-
TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand
-
Lam, J., et al. 2000. TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J. Clin. Invest. 106:1481-1488.
-
(2000)
J. Clin. Invest
, vol.106
, pp. 1481-1488
-
-
Lam, J.1
-
38
-
-
34547470906
-
Pathological role of osteoclast costimulation in arthritis-induced bone loss
-
Ochi, S., et al. 2007. Pathological role of osteoclast costimulation in arthritis-induced bone loss. Proc. Natl. Acad. Sci. U. S. A. 104:11394-11399.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A
, vol.104
, pp. 11394-11399
-
-
Ochi, S.1
-
39
-
-
0033104614
-
TRANCE, a TNF family member, is differentially expressed on T cell subsets and induces cytokine production in dendritic cells
-
Josien, R., et al. 1999. TRANCE, a TNF family member, is differentially expressed on T cell subsets and induces cytokine production in dendritic cells. J. Immunol. 162:2562-2568.
-
(1999)
J. Immunol
, vol.162
, pp. 2562-2568
-
-
Josien, R.1
-
40
-
-
0031439265
-
TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor
-
Wong, B.R., et al. 1997. TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J. Exp. Med. 186:2075-2080.
-
(1997)
J. Exp. Med
, vol.186
, pp. 2075-2080
-
-
Wong, B.R.1
-
41
-
-
0036199656
-
Dendritic cell development and survival require distinct NF-kappaB subunits
-
Ouaaz, F., et al. 2002. Dendritic cell development and survival require distinct NF-kappaB subunits. Immunity. 16:257-270.
-
(2002)
Immunity
, vol.16
, pp. 257-270
-
-
Ouaaz, F.1
-
42
-
-
23744459835
-
DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells
-
Yagi, M., et al. 2005. DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J. Exp. Med. 202:345-351.
-
(2005)
J. Exp. Med
, vol.202
, pp. 345-351
-
-
Yagi, M.1
-
43
-
-
33845537394
-
v-ATPase V0 subunit d2-deficient mice exhibit impaired OC fusion and increased bone formation
-
Lee, S.H., et al. 2006. v-ATPase V0 subunit d2-deficient mice exhibit impaired OC fusion and increased bone formation. Nat. Med. 12:1403-1409.
-
(2006)
Nat. Med
, vol.12
, pp. 1403-1409
-
-
Lee, S.H.1
-
44
-
-
35448947277
-
CD200 and its receptor, CD200R, modulate bone mass via the differentiation of osteoclasts
-
Cui, W., et al. 2007. CD200 and its receptor, CD200R, modulate bone mass via the differentiation of osteoclasts. Proc. Natl. Acad. Sci. U. S. A. 104:14436-14441.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A
, vol.104
, pp. 14436-14441
-
-
Cui, W.1
-
45
-
-
0033519221
-
The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts
-
Burgess, T.L., et al. 1999. The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J. Cell Biol. 145:527-538.
-
(1999)
J. Cell Biol
, vol.145
, pp. 527-538
-
-
Burgess, T.L.1
-
46
-
-
0033994430
-
The cell biology of osteoclast function
-
Vaananen, H.K., Zao, H., Mulari, M., and Halleen, J.M. 2000. The cell biology of osteoclast function. J. Cell Sci. 113:377-381.
-
(2000)
J. Cell Sci
, vol.113
, pp. 377-381
-
-
Vaananen, H.K.1
Zao, H.2
Mulari, M.3
Halleen, J.M.4
-
47
-
-
0037113931
-
A RANK/TRAF6-dependent signal transduction pathway is essential for osteoclast cytoskeletal organization and resorptive function
-
Amstrong, A.P., et al. 2002. A RANK/TRAF6-dependent signal transduction pathway is essential for osteoclast cytoskeletal organization and resorptive function. J. Biol. Chem. 277:44347-44356.
-
(2002)
J. Biol. Chem
, vol.277
, pp. 44347-44356
-
-
Amstrong, A.P.1
-
48
-
-
34548454049
-
Biology of RANK, RANKL, and osteoprotegerin
-
Boyce, B.F., and Xing, L. 2007. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res. Ther. 9(Suppl. 1):S1.
-
(2007)
Arthritis Res. Ther
, vol.9
, Issue.SUPPL. 1
-
-
Boyce, B.F.1
Xing, L.2
-
49
-
-
32544434560
-
Role of RANK ligand in normal and pathological bone remodeling and the therapeutic potential of novel inhibitory molecules in musculoskeletal diseases
-
Cohen, S. 2006. Role of RANK ligand in normal and pathological bone remodeling and the therapeutic potential of novel inhibitory molecules in musculoskeletal diseases. Arthritis Rheum. 55:15-18.
-
(2006)
Arthritis Rheum
, vol.55
, pp. 15-18
-
-
Cohen, S.1
-
50
-
-
84934437953
-
Characteristics and biological functions of TRAF6
-
Inoue, J., Gohda, J., and Akiyama, T. 2007. Characteristics and biological functions of TRAF6. Adv. Exp. Med. Biol. 597:72-79.
-
(2007)
Adv. Exp. Med. Biol
, vol.597
, pp. 72-79
-
-
Inoue, J.1
Gohda, J.2
Akiyama, T.3
-
51
-
-
2942703810
-
Selective inhibition of NF-κB blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo
-
Jimi, E., et al. 2004. Selective inhibition of NF-κB blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nat. Med. 10:617-624.
-
(2004)
Nat. Med
, vol.10
, pp. 617-624
-
-
Jimi, E.1
-
52
-
-
7044262742
-
Nuclear factor (NF)-κB proteins: Therapeutic targets
-
Verma, I.M. 2004. Nuclear factor (NF)-κB proteins: therapeutic targets. Ann. Rheum. Dis. 63(Suppl. 2):ii57-ii61.
-
(2004)
Ann. Rheum. Dis
, vol.63
, Issue.SUPPL. 2
-
-
Verma, I.M.1
-
53
-
-
23844515714
-
NFAT and Osterix cooperatively regulate bone formation
-
Koga, T., et al. 2005. NFAT and Osterix cooperatively regulate bone formation. Nat. Med. 11:880-885.
-
(2005)
Nat. Med
, vol.11
, pp. 880-885
-
-
Koga, T.1
-
54
-
-
0030799284
-
Role of 1 α,25-dihydroxyvitamin D3 in osteoclast differentiation and function
-
Suda, T., Jimi, E., Nakamura, I., and Takahashi, N. 1997. Role of 1 α,25-dihydroxyvitamin D3 in osteoclast differentiation and function. Methods Enzymol. 282:223-235.
-
(1997)
Methods Enzymol
, vol.282
, pp. 223-235
-
-
Suda, T.1
Jimi, E.2
Nakamura, I.3
Takahashi, N.4
-
55
-
-
0032714454
-
Osteoblastic cells induce fusion and activation of osteoclasts through a mechanism of macrophage-colony- stimulating factor production
-
Takami, M., Woo, J.T., and Nagai, K. 1999. Osteoblastic cells induce fusion and activation of osteoclasts through a mechanism of macrophage-colony- stimulating factor production. Cell Tissue Res. 298:327-334.
-
(1999)
Cell Tissue Res
, vol.298
, pp. 327-334
-
-
Takami, M.1
Woo, J.T.2
Nagai, K.3
-
56
-
-
33646248066
-
Interleukin-7 influences osteoclast function in vivo but is not a critical factor in ovariectomy-induced bone loss
-
Lee, S.K., et al. 2006. Interleukin-7 influences osteoclast function in vivo but is not a critical factor in ovariectomy-induced bone loss. J. Bone Miner. Res. 21:695-702.
-
(2006)
J. Bone Miner. Res
, vol.21
, pp. 695-702
-
-
Lee, S.K.1
-
57
-
-
0034007273
-
Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation
-
Montero, A., et al. 2000. Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. J. Clin. Invest. 105:1085-1093.
-
(2000)
J. Clin. Invest
, vol.105
, pp. 1085-1093
-
-
Montero, A.1
|