메뉴 건너뛰기




Volumn 9, Issue 2, 2009, Pages 243-257

Analysis of support vector machines regression

Author keywords

Excess error; Learning rates; Regularization; Reproducing kernel Hilbert spaces; Support vector machines regression

Indexed keywords

CLASSIFICATION ALGORITHM; ITERATION TECHNIQUES; LEARNING RATES; LEAST SQUARE REGRESSION; QUANTITATIVE ESTIMATES; REGULARIZATION; REPRODUCING KERNEL HILBERT SPACES; SUPPORT VECTOR MACHINES REGRESSION;

EID: 62949199060     PISSN: 16153375     EISSN: 16153383     Source Type: Journal    
DOI: 10.1007/s10208-008-9026-0     Document Type: Article
Times cited : (50)

References (25)
  • 1
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • N. Aronszajn 1950 Theory of reproducing kernels Trans. Am. Math. Soc. 68 337 404
    • (1950) Trans. Am. Math. Soc. , vol.68 , pp. 337-404
    • Aronszajn, N.1
  • 2
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more import than the size of the network
    • P.L. Bartlett 1998 The sample complexity of pattern classification with neural networks: The size of the weights is more import than the size of the network IEEE Trans. Inf. Theory 44 525 536
    • (1998) IEEE Trans. Inf. Theory , vol.44 , pp. 525-536
    • Bartlett, P.L.1
  • 4
    • 84879394399 scopus 로고    scopus 로고
    • Support vector machine soft margin classifiers: Error analysis
    • D.R. Chen Q. Wu Y. Ying D.X. Zhou 2004 Support vector machine soft margin classifiers: error analysis J. Mach. Learn. Res. 5 1143 1175
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1143-1175
    • Chen, D.R.1    Wu, Q.2    Ying, Y.3    Zhou, D.X.4
  • 5
    • 42449093653 scopus 로고    scopus 로고
    • Consistency and robustness of kernel-based regression in convex risk minimization
    • A. Christmann I. Steinwart 2007 Consistency and robustness of kernel-based regression in convex risk minimization Bernoulli 13 799 819
    • (2007) Bernoulli , vol.13 , pp. 799-819
    • Christmann, A.1    Steinwart, I.2
  • 6
    • 0036071370 scopus 로고    scopus 로고
    • On the mathematical foundations of learning theory
    • F. Cucker S. Smale 2001 On the mathematical foundations of learning theory Bull. Am. Math. Soc. 39 1 49
    • (2001) Bull. Am. Math. Soc. , vol.39 , pp. 1-49
    • Cucker, F.1    Smale, S.2
  • 7
    • 0036436325 scopus 로고    scopus 로고
    • Best choices for regularization parameters in learning theory: On the bias-variance problem
    • F. Cucker S. Smale 2002 Best choices for regularization parameters in learning theory: On the bias-variance problem Found. Comput. Math. 2 413 428
    • (2002) Found. Comput. Math. , vol.2 , pp. 413-428
    • Cucker, F.1    Smale, S.2
  • 8
    • 24944432318 scopus 로고    scopus 로고
    • Model selection for regularized least-squares algorithm in learning theory
    • E. De Vito A. Caponnetto L. Rosasco 2005 Model selection for regularized least-squares algorithm in learning theory Found. Comput. Math. 5 59 85
    • (2005) Found. Comput. Math. , vol.5 , pp. 59-85
    • De Vito, E.1    Caponnetto, A.2    Rosasco, L.3
  • 10
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • T. Evgeniou M. Pontil T. Poggio 2000 Regularization networks and support vector machines Adv. Comput. Math. 13 1 50
    • (2000) Adv. Comput. Math. , vol.13 , pp. 1-50
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 12
    • 0242705996 scopus 로고    scopus 로고
    • The mathematics of learning: Deal with data
    • T. Poggio S. Smale 2003 The mathematics of learning: Deal with data Not. Am. Math. Soc. 50 537 544
    • (2003) Not. Am. Math. Soc. , vol.50 , pp. 537-544
    • Poggio, T.1    Smale, S.2
  • 16
    • 27844555491 scopus 로고    scopus 로고
    • Shannon sampling II. Connections to learning theory
    • S. Smale D.X. Zhou 2005 Shannon sampling II. Connections to learning theory Appl. Comput. Harmon. Anal. 19 285 302
    • (2005) Appl. Comput. Harmon. Anal. , vol.19 , pp. 285-302
    • Smale, S.1    Zhou, D.X.2
  • 17
    • 34547455409 scopus 로고    scopus 로고
    • Learning theory estimates via integral operators and their applications
    • S. Smale D.X. Zhou 2007 Learning theory estimates via integral operators and their applications Constr. Approx. 26 153 172
    • (2007) Constr. Approx. , vol.26 , pp. 153-172
    • Smale, S.1    Zhou, D.X.2
  • 21
    • 17444402055 scopus 로고    scopus 로고
    • SVM soft margin classifiers: Linear programming versus quadratic programming
    • Q. Wu D.X. Zhou 2005 SVM soft margin classifiers: Linear programming versus quadratic programming Neural Comput. 17 1160 1187
    • (2005) Neural Comput. , vol.17 , pp. 1160-1187
    • Wu, Q.1    Zhou, D.X.2
  • 22
    • 33744772341 scopus 로고    scopus 로고
    • Learning rates of least-square regularized regression
    • Q. Wu Y. Ying D.X. Zhou 2006 Learning rates of least-square regularized regression Found. Comput. Math. 6 171 192
    • (2006) Found. Comput. Math. , vol.6 , pp. 171-192
    • Wu, Q.1    Ying, Y.2    Zhou, D.X.3
  • 23
    • 0036748375 scopus 로고    scopus 로고
    • The covering number in learning theory
    • D.X. Zhou 2002 The covering number in learning theory J. Complex. 18 739 767
    • (2002) J. Complex. , vol.18 , pp. 739-767
    • Zhou, D.X.1
  • 24
    • 0038105204 scopus 로고    scopus 로고
    • Capacity of reproducing kernel spaces in learning theory
    • D.X. Zhou 2003 Capacity of reproducing kernel spaces in learning theory IEEE Trans. Inf. Theory 49 1743 1752
    • (2003) IEEE Trans. Inf. Theory , vol.49 , pp. 1743-1752
    • Zhou, D.X.1
  • 25
    • 33745650526 scopus 로고    scopus 로고
    • Approximation with polynomial kernels and SVM classifiers
    • D.X. Zhou K. Jetter 2006 Approximation with polynomial kernels and SVM classifiers Adv. Comput. Math. 25 323 344
    • (2006) Adv. Comput. Math. , vol.25 , pp. 323-344
    • Zhou, D.X.1    Jetter, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.